Predicting the Long-Term Stability of Biologics with Short-Term Data.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-09-02 Epub Date: 2024-08-09 DOI:10.1021/acs.molpharmaceut.4c00609
Michael Dillon, Jun Xu, Geetha Thiagarajan, Daniel Skomski, Adam Procopio
{"title":"Predicting the Long-Term Stability of Biologics with Short-Term Data.","authors":"Michael Dillon, Jun Xu, Geetha Thiagarajan, Daniel Skomski, Adam Procopio","doi":"10.1021/acs.molpharmaceut.4c00609","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the long-term stability of biologics is crucial to ensure safe, effective, and cost-efficient life-saving therapeutics. Current industry and regulatory practices require arduous real-time data collection over three years; thus, reducing this bottleneck while still ensuring product quality would enhance the speed of medicine to patients. We developed a parallel-pathway kinetic model, combined with Monte Carlo simulations for prediction intervals, to predict the long-term (2+ years) stability of biotherapeutic critical quality attributes (aggregates, fragments, charge variants, purity, and potency) with short-term (3-6 months) data from intended, accelerated, and stressed temperatures. We rigorously validated the model with 18 biotherapeutic drug products, composed of IgG1 and IgG4 monoclonal antibodies, antibody-drug conjugates, dual protein coformulations, and a fusion protein, including high concentration (≥100 mg/mL) formulations, in liquid and lyophilized presentations. For each drug product, we accurately predicted the long-term trends of multiple quality attributes using just 6 months of data. Further, we demonstrated superior stability prediction via our methods compared with industry-standard linear regression methods. The robust and repeatable results of this work across an unprecedented suite of 18 biotherapeutic compounds suggest that kinetic models with Monte Carlo simulation can predict the long-term stability of biologics with short-term data.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00609","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the long-term stability of biologics is crucial to ensure safe, effective, and cost-efficient life-saving therapeutics. Current industry and regulatory practices require arduous real-time data collection over three years; thus, reducing this bottleneck while still ensuring product quality would enhance the speed of medicine to patients. We developed a parallel-pathway kinetic model, combined with Monte Carlo simulations for prediction intervals, to predict the long-term (2+ years) stability of biotherapeutic critical quality attributes (aggregates, fragments, charge variants, purity, and potency) with short-term (3-6 months) data from intended, accelerated, and stressed temperatures. We rigorously validated the model with 18 biotherapeutic drug products, composed of IgG1 and IgG4 monoclonal antibodies, antibody-drug conjugates, dual protein coformulations, and a fusion protein, including high concentration (≥100 mg/mL) formulations, in liquid and lyophilized presentations. For each drug product, we accurately predicted the long-term trends of multiple quality attributes using just 6 months of data. Further, we demonstrated superior stability prediction via our methods compared with industry-standard linear regression methods. The robust and repeatable results of this work across an unprecedented suite of 18 biotherapeutic compounds suggest that kinetic models with Monte Carlo simulation can predict the long-term stability of biologics with short-term data.

Abstract Image

用短期数据预测生物制剂的长期稳定性。
了解生物制剂的长期稳定性对于确保安全、有效和经济高效的救命疗法至关重要。目前的行业和监管实践要求进行长达三年的艰苦的实时数据收集工作;因此,在确保产品质量的同时减少这一瓶颈将提高药品对患者的供应速度。我们开发了一个并行途径动力学模型,结合蒙特卡罗模拟预测区间,利用来自预定温度、加速温度和压力温度的短期(3-6 个月)数据,预测生物治疗关键质量属性(聚集体、片段、电荷变异、纯度和效力)的长期(2 年以上)稳定性。我们用 18 种生物治疗药物产品严格验证了该模型,包括 IgG1 和 IgG4 单克隆抗体、抗体-药物共轭物、双蛋白共制剂和融合蛋白,包括液体和冻干制剂中的高浓度(≥100 mg/mL)制剂。对于每种药物产品,我们仅用 6 个月的数据就准确预测了多种质量属性的长期趋势。此外,与行业标准的线性回归方法相比,我们的方法在稳定性预测方面更胜一筹。这项工作在前所未有的 18 种生物治疗化合物中取得了稳健且可重复的结果,表明采用蒙特卡罗模拟的动力学模型可以通过短期数据预测生物制剂的长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信