Creating large-scale genetic diversity in Arabidopsis via base editing-mediated deep artificial evolution

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiang Wang, Wenbo Pan, Chao Sun, Hong Yang, Zhentao Cheng, Fei Yan, Guojing Ma, Yun Shang, Rui Zhang, Caixia Gao, Lijing Liu, Huawei Zhang
{"title":"Creating large-scale genetic diversity in Arabidopsis via base editing-mediated deep artificial evolution","authors":"Xiang Wang, Wenbo Pan, Chao Sun, Hong Yang, Zhentao Cheng, Fei Yan, Guojing Ma, Yun Shang, Rui Zhang, Caixia Gao, Lijing Liu, Huawei Zhang","doi":"10.1186/s13059-024-03358-9","DOIUrl":null,"url":null,"abstract":"Base editing is a powerful tool for artificial evolution to create allelic diversity and improve agronomic traits. However, the great evolutionary potential for every sgRNA target has been overlooked. And there is currently no high-throughput method for generating and characterizing as many changes in a single target as possible based on large mutant pools to permit rapid gene directed evolution in plants. In this study, we establish an efficient germline-specific evolution system to screen beneficial alleles in Arabidopsis which could be applied for crop improvement. This system is based on a strong egg cell-specific cytosine base editor and the large seed production of Arabidopsis, which enables each T1 plant with unedited wild type alleles to produce thousands of independent T2 mutant lines. It has the ability of creating a wide range of mutant lines, including those containing atypical base substitutions, and as well providing a space- and labor-saving way to store and screen the resulting mutant libraries. Using this system, we efficiently generate herbicide-resistant EPSPS, ALS, and HPPD variants that could be used in crop breeding. Here, we demonstrate the significant potential of base editing-mediated artificial evolution for each sgRNA target and devised an efficient system for conducting deep evolution to harness this potential.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"367 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03358-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Base editing is a powerful tool for artificial evolution to create allelic diversity and improve agronomic traits. However, the great evolutionary potential for every sgRNA target has been overlooked. And there is currently no high-throughput method for generating and characterizing as many changes in a single target as possible based on large mutant pools to permit rapid gene directed evolution in plants. In this study, we establish an efficient germline-specific evolution system to screen beneficial alleles in Arabidopsis which could be applied for crop improvement. This system is based on a strong egg cell-specific cytosine base editor and the large seed production of Arabidopsis, which enables each T1 plant with unedited wild type alleles to produce thousands of independent T2 mutant lines. It has the ability of creating a wide range of mutant lines, including those containing atypical base substitutions, and as well providing a space- and labor-saving way to store and screen the resulting mutant libraries. Using this system, we efficiently generate herbicide-resistant EPSPS, ALS, and HPPD variants that could be used in crop breeding. Here, we demonstrate the significant potential of base editing-mediated artificial evolution for each sgRNA target and devised an efficient system for conducting deep evolution to harness this potential.
通过碱基编辑介导的深度人工进化在拟南芥中创造大规模遗传多样性
碱基编辑是人工进化的有力工具,可创造等位基因多样性并改善农艺性状。然而,每个 sgRNA 目标的巨大进化潜力都被忽视了。而且目前还没有一种高通量的方法,可以在大型突变体池的基础上尽可能多地产生和表征单一靶标的变化,从而实现植物基因的快速定向进化。在这项研究中,我们建立了一个高效的种系特异性进化系统来筛选拟南芥中的有益等位基因,并将其应用于作物改良。该系统基于强大的卵细胞特异性胞嘧啶碱基编辑器和拟南芥庞大的种子产量,这使得每株带有未经编辑的野生型等位基因的 T1 植物都能产生成千上万个独立的 T2 突变株系。该系统能够产生多种突变株系,包括含有非典型碱基置换的突变株系,还能以节省空间和人力的方式储存和筛选所产生的突变株系文库。利用这一系统,我们有效地产生了可用于作物育种的抗除草剂 EPSPS、ALS 和 HPPD 变异株。在这里,我们证明了碱基编辑介导的人工进化对每个 sgRNA 目标的巨大潜力,并设计了一个高效的系统来进行深度进化以利用这一潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信