Pelin Icer Baykal, Paweł Piotr Łabaj, Florian Markowetz, Lynn M. Schriml, Daniel J. Stekhoven, Serghei Mangul, Niko Beerenwinkel
{"title":"Genomic reproducibility in the bioinformatics era","authors":"Pelin Icer Baykal, Paweł Piotr Łabaj, Florian Markowetz, Lynn M. Schriml, Daniel J. Stekhoven, Serghei Mangul, Niko Beerenwinkel","doi":"10.1186/s13059-024-03343-2","DOIUrl":null,"url":null,"abstract":"In biomedical research, validating a scientific discovery hinges on the reproducibility of its experimental results. However, in genomics, the definition and implementation of reproducibility remain imprecise. We argue that genomic reproducibility, defined as the ability of bioinformatics tools to maintain consistent results across technical replicates, is essential for advancing scientific knowledge and medical applications. Initially, we examine different interpretations of reproducibility in genomics to clarify terms. Subsequently, we discuss the impact of bioinformatics tools on genomic reproducibility and explore methods for evaluating these tools regarding their effectiveness in ensuring genomic reproducibility. Finally, we recommend best practices to improve genomic reproducibility.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03343-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In biomedical research, validating a scientific discovery hinges on the reproducibility of its experimental results. However, in genomics, the definition and implementation of reproducibility remain imprecise. We argue that genomic reproducibility, defined as the ability of bioinformatics tools to maintain consistent results across technical replicates, is essential for advancing scientific knowledge and medical applications. Initially, we examine different interpretations of reproducibility in genomics to clarify terms. Subsequently, we discuss the impact of bioinformatics tools on genomic reproducibility and explore methods for evaluating these tools regarding their effectiveness in ensuring genomic reproducibility. Finally, we recommend best practices to improve genomic reproducibility.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.