{"title":"A machine learning tool to efficiently calculate electron–phonon coupling","authors":"","doi":"10.1038/s43588-024-00680-x","DOIUrl":null,"url":null,"abstract":"A machine learning framework that uses atomic orbital-based Hamiltonian matrices and gradients predicted by an equivariant graph neural network is established to calculate electron–phonon coupling (EPC). This approach accelerates the calculations by several orders of magnitude, enabling EPC-related properties to be predicted for complex systems using highly accurate functionals.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 8","pages":"565-566"},"PeriodicalIF":12.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00680-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A machine learning framework that uses atomic orbital-based Hamiltonian matrices and gradients predicted by an equivariant graph neural network is established to calculate electron–phonon coupling (EPC). This approach accelerates the calculations by several orders of magnitude, enabling EPC-related properties to be predicted for complex systems using highly accurate functionals.