Vassilis G Giannakoulis, Georgios Psychogios, Christina Routsi, Ioanna Dimopoulou, Ilias I Siempos
{"title":"Effect of Early Versus Delayed Tracheostomy Strategy on Functional Outcome of Patients With Severe Traumatic Brain Injury: A Target Trial Emulation.","authors":"Vassilis G Giannakoulis, Georgios Psychogios, Christina Routsi, Ioanna Dimopoulou, Ilias I Siempos","doi":"10.1097/CCE.0000000000001145","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Optimal timing of tracheostomy in severe traumatic brain injury (TBI) is unknown due to lack of clinical trials. We emulated a target trial to estimate the effect of early vs. delayed tracheostomy strategy on functional outcome of patients with severe TBI.</p><p><strong>Design: </strong>Target trial emulation using 1:1 balanced risk-set matching.</p><p><strong>Setting: </strong>North American hospitals participating in the TBI Hypertonic Saline randomized controlled trial of the Resuscitation Outcomes Consortium.</p><p><strong>Patients: </strong>The prematching population consisted of patients with TBI and admission Glasgow Coma Scale less than or equal to 8, who were alive and on mechanical ventilation on the fourth day following trial enrollment, and stayed in the ICU for at least 5 days. Patients with absolute indication for tracheostomy and patients who died during the first 28 days with a decision to withdraw care were excluded.</p><p><strong>Interventions: </strong>We matched patients who received tracheostomy at a certain timepoint (early group) with patients who had not received tracheostomy at the same timepoint but were at-risk of tracheostomy in the future (delayed group). The primary outcome was a poor 6-month functional outcome, defined as Glasgow Outcome Scale-Extended less than or equal to 4.</p><p><strong>Measurements and main results: </strong>Out of 1282 patients available for analysis, 275 comprised the prematching population, with 75 pairs being created postmatching. Median time of tracheostomy differed significantly in the early vs. the delayed group (7.0 d [6.0-10.0 d] vs. 12.0 d [9.8-18.3 d]; p < 0.001). Only 40% of patients in the delayed group received tracheostomy. There was no statistically significant difference between groups regarding poor 6-month functional outcome (early: 68.0% vs. delayed: 72.0%; p = 0.593).</p><p><strong>Conclusions: </strong>In a target trial emulation, early as opposed to delayed tracheostomy strategy was not associated with differences in 6-month functional outcome following severe TBI. Considering the limitations of target trial emulations, delaying tracheostomy through a \"watchful waiting\" approach may be appropriate.</p>","PeriodicalId":93957,"journal":{"name":"Critical care explorations","volume":"6 8","pages":"e1145"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319316/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical care explorations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/CCE.0000000000001145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Optimal timing of tracheostomy in severe traumatic brain injury (TBI) is unknown due to lack of clinical trials. We emulated a target trial to estimate the effect of early vs. delayed tracheostomy strategy on functional outcome of patients with severe TBI.
Design: Target trial emulation using 1:1 balanced risk-set matching.
Setting: North American hospitals participating in the TBI Hypertonic Saline randomized controlled trial of the Resuscitation Outcomes Consortium.
Patients: The prematching population consisted of patients with TBI and admission Glasgow Coma Scale less than or equal to 8, who were alive and on mechanical ventilation on the fourth day following trial enrollment, and stayed in the ICU for at least 5 days. Patients with absolute indication for tracheostomy and patients who died during the first 28 days with a decision to withdraw care were excluded.
Interventions: We matched patients who received tracheostomy at a certain timepoint (early group) with patients who had not received tracheostomy at the same timepoint but were at-risk of tracheostomy in the future (delayed group). The primary outcome was a poor 6-month functional outcome, defined as Glasgow Outcome Scale-Extended less than or equal to 4.
Measurements and main results: Out of 1282 patients available for analysis, 275 comprised the prematching population, with 75 pairs being created postmatching. Median time of tracheostomy differed significantly in the early vs. the delayed group (7.0 d [6.0-10.0 d] vs. 12.0 d [9.8-18.3 d]; p < 0.001). Only 40% of patients in the delayed group received tracheostomy. There was no statistically significant difference between groups regarding poor 6-month functional outcome (early: 68.0% vs. delayed: 72.0%; p = 0.593).
Conclusions: In a target trial emulation, early as opposed to delayed tracheostomy strategy was not associated with differences in 6-month functional outcome following severe TBI. Considering the limitations of target trial emulations, delaying tracheostomy through a "watchful waiting" approach may be appropriate.