{"title":"Accelerating the calculation of electron–phonon coupling strength with machine learning","authors":"Yang Zhong, Shixu Liu, Binhua Zhang, Zhiguo Tao, Yuting Sun, Weibin Chu, Xin-Gao Gong, Ji-Hui Yang, Hongjun Xiang","doi":"10.1038/s43588-024-00668-7","DOIUrl":null,"url":null,"abstract":"The calculation of electron–phonon couplings (EPCs) is essential for understanding various fundamental physical properties, including electrical transport, optical and superconducting behaviors in materials. However, obtaining EPCs through fully first-principles methods is notably challenging, particularly for large systems or when employing advanced functionals. Here we introduce a machine learning framework to accelerate EPC calculations by utilizing atomic orbital-based Hamiltonian matrices and gradients predicted by an equivariant graph neural network. We demonstrate that our method not only yields EPC values in close agreement with first-principles results but also enhances calculation efficiency by several orders of magnitude. Application to GaAs using the Heyd–Scuseria–Ernzerhof functional reveals the necessity of advanced functionals for accurate carrier mobility predictions, while for the large Kagome crystal CsV3Sb5, our framework reproduces the experimentally observed double domes in pressure-induced superconducting phase diagrams. This machine learning framework offers a powerful and efficient tool for the investigation of diverse EPC-related phenomena in complex materials. A machine learning framework is proposed to accurately predict electron–phonon coupling (EPC) strengths while reducing computational costs compared with first-principles methods. This approach facilitates EPC calculations with advanced functionals, allowing the accurate determination of real-world material properties such as carrier mobility and superconductivity.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 8","pages":"615-625"},"PeriodicalIF":12.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00668-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The calculation of electron–phonon couplings (EPCs) is essential for understanding various fundamental physical properties, including electrical transport, optical and superconducting behaviors in materials. However, obtaining EPCs through fully first-principles methods is notably challenging, particularly for large systems or when employing advanced functionals. Here we introduce a machine learning framework to accelerate EPC calculations by utilizing atomic orbital-based Hamiltonian matrices and gradients predicted by an equivariant graph neural network. We demonstrate that our method not only yields EPC values in close agreement with first-principles results but also enhances calculation efficiency by several orders of magnitude. Application to GaAs using the Heyd–Scuseria–Ernzerhof functional reveals the necessity of advanced functionals for accurate carrier mobility predictions, while for the large Kagome crystal CsV3Sb5, our framework reproduces the experimentally observed double domes in pressure-induced superconducting phase diagrams. This machine learning framework offers a powerful and efficient tool for the investigation of diverse EPC-related phenomena in complex materials. A machine learning framework is proposed to accurately predict electron–phonon coupling (EPC) strengths while reducing computational costs compared with first-principles methods. This approach facilitates EPC calculations with advanced functionals, allowing the accurate determination of real-world material properties such as carrier mobility and superconductivity.