Xiao-lei Zhang , Yong-Xin Li , Nils Berglund , Jeffrey S. Burgdorf , John E. Donello , Joseph R. Moskal , Patric K. Stanton
{"title":"Zelquistinel acts at an extracellular binding domain to modulate intracellular calcium inactivation of N-methyl-d-aspartate receptors","authors":"Xiao-lei Zhang , Yong-Xin Li , Nils Berglund , Jeffrey S. Burgdorf , John E. Donello , Joseph R. Moskal , Patric K. Stanton","doi":"10.1016/j.neuropharm.2024.110100","DOIUrl":null,"url":null,"abstract":"<div><p>Stinels are a novel class of N-methyl-<span>d</span>-aspartate glutamate receptor (NMDAR) positive allosteric modulators. We explored mechanism of action and NR2 subtype specificity of the stinel zelquistinel (ZEL) in HEK 293 cells expressing recombinant NMDARs. ZEL potently enhanced NMDAR current at NR2A (EC50 = 9.9 ± 0.5 nM) and NR2C-containing (EC50 = 9.7 ± 0.6 nM) NMDARs, with a larger ceiling enhancement at NR2B-NMDAR (EC50 = 35.0 ± 0.7 nM), while not affecting NR2D-containing NMDARs. In cells expressing NR2A and NR2C-containing NMDARs, ZEL exhibited an inverted-U dose-response relation, with a low concentration enhancement and high concentration suppression of NMDAR currents. Extracellular application of ZEL potentiated NMDAR receptor activity via prolongation of NMDAR currents. Replacing the slow Ca<sup>2+</sup> intracellular chelator EGTA with the fast chelator BAPTA blocked ZEL potentiation of NMDARs, suggesting an action on intracellular Ca<sup>2+</sup>-calmodulin-dependent inactivation (CDI). Consistent with this mechanism of action, removal of the NR1 intracellular C-terminus, or intracellular infusion of a calmodulin blocking peptide, blocked ZEL potentiation of NMDAR current. In contrast, BAPTA did not prevent high-dose suppression of current, indicating this effect has a different mechanism of action. These data indicate ZEL is a novel positive allosteric modulator that binds extracellularly and acts through a unique long-distance mechanism to reduce NMDAR CDI, eliciting enhancement of NMDAR current. The critical role that NMDARs play in long-term, activity-dependent synaptic plasticity, learning, memory and cognition, suggests dysregulation of CDI may contribute to psychiatric disorders such as depression, schizophrenia and others, and that the stinel class of drugs can restore NMDAR-dependent synaptic plasticity by reducing activity-dependent CDI.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"259 ","pages":"Article 110100"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390824002697","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stinels are a novel class of N-methyl-d-aspartate glutamate receptor (NMDAR) positive allosteric modulators. We explored mechanism of action and NR2 subtype specificity of the stinel zelquistinel (ZEL) in HEK 293 cells expressing recombinant NMDARs. ZEL potently enhanced NMDAR current at NR2A (EC50 = 9.9 ± 0.5 nM) and NR2C-containing (EC50 = 9.7 ± 0.6 nM) NMDARs, with a larger ceiling enhancement at NR2B-NMDAR (EC50 = 35.0 ± 0.7 nM), while not affecting NR2D-containing NMDARs. In cells expressing NR2A and NR2C-containing NMDARs, ZEL exhibited an inverted-U dose-response relation, with a low concentration enhancement and high concentration suppression of NMDAR currents. Extracellular application of ZEL potentiated NMDAR receptor activity via prolongation of NMDAR currents. Replacing the slow Ca2+ intracellular chelator EGTA with the fast chelator BAPTA blocked ZEL potentiation of NMDARs, suggesting an action on intracellular Ca2+-calmodulin-dependent inactivation (CDI). Consistent with this mechanism of action, removal of the NR1 intracellular C-terminus, or intracellular infusion of a calmodulin blocking peptide, blocked ZEL potentiation of NMDAR current. In contrast, BAPTA did not prevent high-dose suppression of current, indicating this effect has a different mechanism of action. These data indicate ZEL is a novel positive allosteric modulator that binds extracellularly and acts through a unique long-distance mechanism to reduce NMDAR CDI, eliciting enhancement of NMDAR current. The critical role that NMDARs play in long-term, activity-dependent synaptic plasticity, learning, memory and cognition, suggests dysregulation of CDI may contribute to psychiatric disorders such as depression, schizophrenia and others, and that the stinel class of drugs can restore NMDAR-dependent synaptic plasticity by reducing activity-dependent CDI.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).