{"title":"Binding structures of SERF1a with NT17-polyQ peptides of huntingtin exon 1 revealed by SEC-SWAXS, NMR and molecular simulation","authors":"Tien-Chang Lin , Orion Shih , Tien-Ying Tsai , Yi-Qi Yeh , Kuei-Fen Liao , Bradley W. Mansel , Ying-Jen Shiu , Chi-Fon Chang , An-Chung Su , Yun-Ru Chen , U-Ser Jeng","doi":"10.1107/S2052252524006341","DOIUrl":null,"url":null,"abstract":"<div><p>Binding structures of SERF1a with the N-terminal fragment of huntingtin exon 1 and NT17-polyQ peptides are revealed using an integrated analysis of size-exclusion-column-based small- and wide-angle X-ray scattering (SEC-SWAXS), NMR, and molecular simulation.</p></div><div><p>The aberrant fibrillization of huntingtin exon 1 (Httex1) characterized by an expanded polyglutamine (polyQ) tract is a defining feature of Huntington’s disease, a neurodegenerative disorder. Recent investigations underscore the involvement of a small EDRK-rich factor 1a (SERF1a) in promoting Httex1 fibrillization through interactions with its N terminus. By establishing an integrated approach with size-exclusion-column-based small- and wide-angle X-ray scattering (SEC-SWAXS), NMR, and molecular simulations using <em>Rosetta</em>, the analysis here reveals a tight binding of two NT17 fragments of Httex1 (comprising the initial 17 amino acids at the N terminus) to the N-terminal region of SERF1a. In contrast, examination of the complex structure of SERF1a with a coiled NT17-polyQ peptide (33 amino acids in total) indicates sparse contacts of the NT17 and polyQ segments with the N-terminal side of SERF1a. Furthermore, the integrated SEC-SWAXS and molecular-simulation analysis suggests that the coiled NT17 segment can transform into a helical conformation when associated with a polyQ segment exhibiting high helical content. Intriguingly, NT17-polyQ peptides with enhanced secondary structures display diminished interactions with SERF1a. This insight into the conformation-dependent binding of NT17 provides clues to a catalytic association mechanism underlying SERF1a’s facilitation of Httext1 fibrillization.</p></div>","PeriodicalId":14775,"journal":{"name":"IUCrJ","volume":"11 5","pages":"Pages 849-858"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUCrJ","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S205225252400085X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Binding structures of SERF1a with the N-terminal fragment of huntingtin exon 1 and NT17-polyQ peptides are revealed using an integrated analysis of size-exclusion-column-based small- and wide-angle X-ray scattering (SEC-SWAXS), NMR, and molecular simulation.
The aberrant fibrillization of huntingtin exon 1 (Httex1) characterized by an expanded polyglutamine (polyQ) tract is a defining feature of Huntington’s disease, a neurodegenerative disorder. Recent investigations underscore the involvement of a small EDRK-rich factor 1a (SERF1a) in promoting Httex1 fibrillization through interactions with its N terminus. By establishing an integrated approach with size-exclusion-column-based small- and wide-angle X-ray scattering (SEC-SWAXS), NMR, and molecular simulations using Rosetta, the analysis here reveals a tight binding of two NT17 fragments of Httex1 (comprising the initial 17 amino acids at the N terminus) to the N-terminal region of SERF1a. In contrast, examination of the complex structure of SERF1a with a coiled NT17-polyQ peptide (33 amino acids in total) indicates sparse contacts of the NT17 and polyQ segments with the N-terminal side of SERF1a. Furthermore, the integrated SEC-SWAXS and molecular-simulation analysis suggests that the coiled NT17 segment can transform into a helical conformation when associated with a polyQ segment exhibiting high helical content. Intriguingly, NT17-polyQ peptides with enhanced secondary structures display diminished interactions with SERF1a. This insight into the conformation-dependent binding of NT17 provides clues to a catalytic association mechanism underlying SERF1a’s facilitation of Httext1 fibrillization.
期刊介绍:
IUCrJ is a new fully open-access peer-reviewed journal from the International Union of Crystallography (IUCr).
The journal will publish high-profile articles on all aspects of the sciences and technologies supported by the IUCr via its commissions, including emerging fields where structural results underpin the science reported in the article. Our aim is to make IUCrJ the natural home for high-quality structural science results. Chemists, biologists, physicists and material scientists will be actively encouraged to report their structural studies in IUCrJ.