Toxicity of Bromo-DragonFLY as a New Psychoactive Substance: Application of In Silico Methods for the Prediction of Key Toxicological Parameters Important to Clinical and Forensic Toxicology.
{"title":"Toxicity of Bromo-DragonFLY as a New Psychoactive Substance: Application of <i>In Silico</i> Methods for the Prediction of Key Toxicological Parameters Important to Clinical and Forensic Toxicology.","authors":"Maciej Noga, Kamil Jurowski","doi":"10.1021/acs.chemrestox.4c00105","DOIUrl":null,"url":null,"abstract":"<p><p>Bromo-DragonFLY is a synthetic new psychoactive substance (NPS) that has gained attention due to its powerful and long-lasting hallucinogenic effects, legal status, and widespread availability. This study aimed to use various <i>in silico</i> toxicology methods to predict key toxicological parameters for Bromo-DragonFLY, including acute toxicity (LD<sub>50</sub>), genotoxicity, cardiotoxicity, health effects, and the potential for endocrine disruption. The results indicate significant acute toxicity with noticeable variations across different species, a low likelihood of genotoxic potential suggesting potential DNA damage, and a notable risk of cardiotoxicity associated with inhibition of the hERG channel. Evaluation of endocrine disruption suggests a low probability of Bromo-DragonFLY interacting with the estrogen receptor α (ER-α), indicating minimal estrogenic activity. These insights from <i>in silico</i> investigations are important for advancing our understanding of this NPS in forensic and clinical toxicology. These initial toxicological examinations establish a foundation for future research efforts and contribute to developing risk assessment and management strategies for using and misusing NPS.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1821-1842"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00105","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bromo-DragonFLY is a synthetic new psychoactive substance (NPS) that has gained attention due to its powerful and long-lasting hallucinogenic effects, legal status, and widespread availability. This study aimed to use various in silico toxicology methods to predict key toxicological parameters for Bromo-DragonFLY, including acute toxicity (LD50), genotoxicity, cardiotoxicity, health effects, and the potential for endocrine disruption. The results indicate significant acute toxicity with noticeable variations across different species, a low likelihood of genotoxic potential suggesting potential DNA damage, and a notable risk of cardiotoxicity associated with inhibition of the hERG channel. Evaluation of endocrine disruption suggests a low probability of Bromo-DragonFLY interacting with the estrogen receptor α (ER-α), indicating minimal estrogenic activity. These insights from in silico investigations are important for advancing our understanding of this NPS in forensic and clinical toxicology. These initial toxicological examinations establish a foundation for future research efforts and contribute to developing risk assessment and management strategies for using and misusing NPS.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.