Sajedeh Malek Ghasemi, Seyed Mohammad Binesh, Piltan Tabatabaie Shourijeh
{"title":"Improving clay-geogrid interaction: Enhancing pullout resistance with recycled concrete aggregate encapsulation","authors":"Sajedeh Malek Ghasemi, Seyed Mohammad Binesh, Piltan Tabatabaie Shourijeh","doi":"10.1016/j.geotexmem.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, Recycled Concrete Aggregate (RCA) was employed as a sandwich technique around the geogrid to enhance the pullout resistance of the geogrid in clayey backfills. Large-scale pullout tests were conducted on three configurations: geogrid-reinforced clay, geogrid-reinforced RCA, and geogrid sandwiched between layers of RCA, aimed at investigating pullout resistance and deformation. The experiments encompassed two different geogrid types (designated as G1 and G2), varying normal pressures ranging from 10 to 50 kPa, and RCA layers with thicknesses of 40, 80, 160, and 320 mm. Results from the experiments revealed that the inclusion of RCA layers around the geogrid substantially enhanced pullout resistance, with improvements ranging from 1.5 to 3 times compared to clay specimens. Optimal RCA thicknesses were determined in order to enhance soil-geogrid bonding and pullout resistance. For G1 geogrid, a thickness of 160 mm (equivalent to replacing 25% of clay volume with RCA) was identified as optimal, while for G2 geogrid, an 80 mm thickness (equivalent to replacing 15% of clay volume with RCA) was found to be sufficient. These thicknesses were established to achieve over 80% of the pullout force compared to full RCA specimens.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 6","pages":"Pages 1145-1160"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000888","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, Recycled Concrete Aggregate (RCA) was employed as a sandwich technique around the geogrid to enhance the pullout resistance of the geogrid in clayey backfills. Large-scale pullout tests were conducted on three configurations: geogrid-reinforced clay, geogrid-reinforced RCA, and geogrid sandwiched between layers of RCA, aimed at investigating pullout resistance and deformation. The experiments encompassed two different geogrid types (designated as G1 and G2), varying normal pressures ranging from 10 to 50 kPa, and RCA layers with thicknesses of 40, 80, 160, and 320 mm. Results from the experiments revealed that the inclusion of RCA layers around the geogrid substantially enhanced pullout resistance, with improvements ranging from 1.5 to 3 times compared to clay specimens. Optimal RCA thicknesses were determined in order to enhance soil-geogrid bonding and pullout resistance. For G1 geogrid, a thickness of 160 mm (equivalent to replacing 25% of clay volume with RCA) was identified as optimal, while for G2 geogrid, an 80 mm thickness (equivalent to replacing 15% of clay volume with RCA) was found to be sufficient. These thicknesses were established to achieve over 80% of the pullout force compared to full RCA specimens.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.