Attractors of Caputo semi-dynamical systems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
T. S. Doan, P. E. Kloeden
{"title":"Attractors of Caputo semi-dynamical systems","authors":"T. S. Doan, P. E. Kloeden","doi":"10.1007/s13540-024-00324-x","DOIUrl":null,"url":null,"abstract":"<p>The Volterra integral equation associated with autonomous Caputo fractional differential equation (FDE) of order <span>\\(\\alpha \\in (0,1)\\)</span> in <span>\\({\\mathbb {R}}^d\\)</span> was shown by the authors [4] to generate a semi-group on the space <span>\\({\\mathfrak {C}}\\)</span> of continuous functions <span>\\(f:{\\mathbb {R}}^+\\rightarrow {\\mathbb {R}}^d\\)</span> with the topology uniform convergence on compact subsets. It serves as a semi-dynamical system for the Caputo FDE when restricted to initial functions <i>f</i>(<i>t</i>) <span>\\(\\equiv \\)</span> <span>\\(id_{x_0}\\)</span> for <span>\\(x_0\\)</span> <span>\\(\\in \\)</span> <span>\\({\\mathbb {R}}^d\\)</span>. Here it is shown that this semi-dynamical system has a global Caputo attractor in <span>\\({\\mathfrak {C}}\\)</span>, which is closed, bounded, invariant and attracts constant initial functions, when the vector field function in the Caputo FDE satisfies a dissipativity condition as well as a local Lipschitz condition.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00324-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The Volterra integral equation associated with autonomous Caputo fractional differential equation (FDE) of order \(\alpha \in (0,1)\) in \({\mathbb {R}}^d\) was shown by the authors [4] to generate a semi-group on the space \({\mathfrak {C}}\) of continuous functions \(f:{\mathbb {R}}^+\rightarrow {\mathbb {R}}^d\) with the topology uniform convergence on compact subsets. It serves as a semi-dynamical system for the Caputo FDE when restricted to initial functions f(t) \(\equiv \) \(id_{x_0}\) for \(x_0\) \(\in \) \({\mathbb {R}}^d\). Here it is shown that this semi-dynamical system has a global Caputo attractor in \({\mathfrak {C}}\), which is closed, bounded, invariant and attracts constant initial functions, when the vector field function in the Caputo FDE satisfies a dissipativity condition as well as a local Lipschitz condition.

卡普托半动力系统的吸引子
作者[4]证明了与 \({\mathbb {R}}^d\) 中阶为 \(\alpha \in (0,1)\) 的自主卡普托分数微分方程(FDE)相关的 Volterra 积分方程在连续函数 \(f. \alpha \in (0,1)\) 的空间 \({\mathfrak {C}}\) 上生成了一个半群:f: {mathbb {R}^+\rightarrow {mathbb {R}^d\) 在紧凑子集上具有拓扑均匀收敛性。当初始函数 f(t) \(\equiv \) \(id_{x_0}\) for \(x_0\) \(\in \) \({\mathbb {R}}^d\) 时,它可以作为 Caputo FDE 的半动态系统。这里表明,当 Caputo FDE 中的向量场函数满足耗散性条件以及局部 Lipschitz 条件时,这个半动力系统在 \({\mathfrak {C}}\) 中有一个全局 Caputo 吸引子,它是封闭的、有边界的、不变的并且吸引恒定的初始函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信