Vps34 sustains Treg cell survival and function via regulating intracellular redox homeostasis

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Peiran Feng, Quanli Yang, Liang Luo, Zerong Guan, Jiamin Fu, Mingyue Zhao, Wanqing Meng, Shuo Wan, Junming He, Zhizhong Li, Guang Wang, Guodong Sun, Zhongjun Dong, Meixiang Yang
{"title":"Vps34 sustains Treg cell survival and function via regulating intracellular redox homeostasis","authors":"Peiran Feng, Quanli Yang, Liang Luo, Zerong Guan, Jiamin Fu, Mingyue Zhao, Wanqing Meng, Shuo Wan, Junming He, Zhizhong Li, Guang Wang, Guodong Sun, Zhongjun Dong, Meixiang Yang","doi":"10.1038/s41418-024-01353-y","DOIUrl":null,"url":null,"abstract":"The survival and suppressive function of regulatory T (Treg) cells rely on various intracellular metabolic and physiological processes. Our study demonstrates that Vps34 plays a critical role in maintaining Treg cell homeostasis and function by regulating cellular metabolic activities. Disruption of Vps34 in Treg cells leads to spontaneous fatal systemic autoimmune disorder and multi-tissue inflammatory damage, accompanied by a reduction in the number of Treg cells, particularly eTreg cells with highly immunosuppressive activity. Mechanistically, the poor survival of Vps34-deficient Treg cells is attributed to impaired endocytosis, intracellular vesicular trafficking and autophagosome formation, which further results in enhanced mitochondrial respiration and excessive ROS production. Removal of excessive ROS can effectively rescue the death of Vps34-deficient Treg cells. Functionally, acute deletion of Vps34 within established Treg cells enhances anti-tumor immunity in a malignant melanoma model by boosting T-cell-mediated anti-tumor activity. Overall, our results underscore the pivotal role played by Vps34 in orchestrating Treg cell homeostasis and function towards establishing immune homeostasis and tolerance.","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"31 11","pages":"1519-1533"},"PeriodicalIF":13.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41418-024-01353-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The survival and suppressive function of regulatory T (Treg) cells rely on various intracellular metabolic and physiological processes. Our study demonstrates that Vps34 plays a critical role in maintaining Treg cell homeostasis and function by regulating cellular metabolic activities. Disruption of Vps34 in Treg cells leads to spontaneous fatal systemic autoimmune disorder and multi-tissue inflammatory damage, accompanied by a reduction in the number of Treg cells, particularly eTreg cells with highly immunosuppressive activity. Mechanistically, the poor survival of Vps34-deficient Treg cells is attributed to impaired endocytosis, intracellular vesicular trafficking and autophagosome formation, which further results in enhanced mitochondrial respiration and excessive ROS production. Removal of excessive ROS can effectively rescue the death of Vps34-deficient Treg cells. Functionally, acute deletion of Vps34 within established Treg cells enhances anti-tumor immunity in a malignant melanoma model by boosting T-cell-mediated anti-tumor activity. Overall, our results underscore the pivotal role played by Vps34 in orchestrating Treg cell homeostasis and function towards establishing immune homeostasis and tolerance.

Abstract Image

Abstract Image

Vps34 通过调节细胞内氧化还原平衡维持 Treg 细胞的存活和功能
调节性 T(Treg)细胞的存活和抑制功能依赖于各种细胞内代谢和生理过程。我们的研究表明,Vps34 通过调节细胞代谢活动,在维持 Treg 细胞稳态和功能方面发挥着关键作用。Treg细胞中的Vps34被破坏会导致自发性致命的系统性自身免疫紊乱和多组织炎症损伤,同时伴随着Treg细胞数量的减少,尤其是具有高度免疫抑制活性的eTreg细胞。从机理上讲,Vps34缺陷的Treg细胞存活率低是由于内吞、细胞内囊泡运输和自噬体形成受损,从而进一步导致线粒体呼吸增强和ROS产生过多。清除过量的 ROS 可有效挽救 Vps34 缺陷 Treg 细胞的死亡。从功能上讲,在恶性黑色素瘤模型中,在已建立的 Treg 细胞中急性缺失 Vps34 可增强 T 细胞介导的抗肿瘤活性,从而增强抗肿瘤免疫力。总之,我们的研究结果凸显了 Vps34 在协调 Treg 细胞稳态和功能以建立免疫稳态和耐受性方面发挥的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信