A bronchoscopic navigation method based on neural radiation fields.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Lifeng Zhu, Jianwei Zheng, Cheng Wang, Junhong Jiang, Aiguo Song
{"title":"A bronchoscopic navigation method based on neural radiation fields.","authors":"Lifeng Zhu, Jianwei Zheng, Cheng Wang, Junhong Jiang, Aiguo Song","doi":"10.1007/s11548-024-03243-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We introduce a novel approach for bronchoscopic navigation that leverages neural radiance fields (NeRF) to passively locate the endoscope solely from bronchoscopic images. This approach aims to overcome the limitations and challenges of current bronchoscopic navigation tools that rely on external infrastructures or require active adjustment of the bronchoscope.</p><p><strong>Methods: </strong>To address the challenges, we leverage NeRF for bronchoscopic navigation, enabling passive endoscope localization from bronchoscopic images. We develop a two-stage pipeline: offline training using preoperative data and online passive pose estimation during surgery. To enhance performance, we employ Anderson acceleration and incorporate semantic appearance transfer to deal with the sim-to-real gap between training and inference stages.</p><p><strong>Results: </strong>We assessed the viability of our approach by conducting tests on virtual bronchscopic images and a physical phantom against the SLAM-based methods. The average rotation error in our virtual dataset is about 3.18 <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mo>∘</mo></mmultiscripts> </math> and the translation error is around 4.95 mm. On the physical phantom test, the average rotation and translation error are approximately 5.14 <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mo>∘</mo></mmultiscripts> </math> and 13.12 mm.</p><p><strong>Conclusion: </strong>Our NeRF-based bronchoscopic navigation method eliminates reliance on external infrastructures and active adjustments, offering promising advancements in bronchoscopic navigation. Experimental validation on simulation and real-world phantom models demonstrates its efficacy in addressing challenges like low texture and challenging lighting conditions.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03243-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: We introduce a novel approach for bronchoscopic navigation that leverages neural radiance fields (NeRF) to passively locate the endoscope solely from bronchoscopic images. This approach aims to overcome the limitations and challenges of current bronchoscopic navigation tools that rely on external infrastructures or require active adjustment of the bronchoscope.

Methods: To address the challenges, we leverage NeRF for bronchoscopic navigation, enabling passive endoscope localization from bronchoscopic images. We develop a two-stage pipeline: offline training using preoperative data and online passive pose estimation during surgery. To enhance performance, we employ Anderson acceleration and incorporate semantic appearance transfer to deal with the sim-to-real gap between training and inference stages.

Results: We assessed the viability of our approach by conducting tests on virtual bronchscopic images and a physical phantom against the SLAM-based methods. The average rotation error in our virtual dataset is about 3.18 and the translation error is around 4.95 mm. On the physical phantom test, the average rotation and translation error are approximately 5.14 and 13.12 mm.

Conclusion: Our NeRF-based bronchoscopic navigation method eliminates reliance on external infrastructures and active adjustments, offering promising advancements in bronchoscopic navigation. Experimental validation on simulation and real-world phantom models demonstrates its efficacy in addressing challenges like low texture and challenging lighting conditions.

Abstract Image

基于神经辐射场的支气管镜导航方法。
目的:我们介绍了一种新型支气管镜导航方法,它利用神经辐射场(NeRF),仅通过支气管镜图像就能被动定位内窥镜。这种方法旨在克服当前支气管镜导航工具的局限性和挑战,这些工具依赖于外部基础设施或需要主动调整支气管镜:为了应对这些挑战,我们利用 NeRF 进行支气管镜导航,从而实现从支气管镜图像进行被动内窥镜定位。我们开发了一个两阶段管道:利用术前数据进行离线训练,并在手术过程中进行在线被动姿态估计。为了提高性能,我们采用了安德森加速技术,并结合语义外观转移技术来处理训练和推理阶段之间的模拟与真实之间的差距:我们通过对虚拟支气管镜图像和物理模型进行测试,评估了我们的方法与基于 SLAM 方法的可行性。虚拟数据集的平均旋转误差约为 3.18 ∘,平移误差约为 4.95 mm。在物理模型测试中,平均旋转和平移误差分别约为 5.14 ∘ 和 13.12 mm:我们基于 NeRF 的支气管镜导航方法无需依赖外部基础设施和主动调整,有望推动支气管镜导航的发展。在模拟和真实世界模型上进行的实验验证表明,该方法在应对低纹理和具有挑战性的照明条件等挑战方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信