ICG signal denoising based on ICEEMDAN and PSO-VMD methods.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xinhai Li, Runyu Ni, Zhong Ji
{"title":"ICG signal denoising based on ICEEMDAN and PSO-VMD methods.","authors":"Xinhai Li, Runyu Ni, Zhong Ji","doi":"10.1007/s13246-024-01467-0","DOIUrl":null,"url":null,"abstract":"<p><p>Impedance cardiography (ICG) plays a crucial role in clinically evaluating cardiac systolic and diastolic functions, along with various other cardiac parameters. However, its accuracy heavily depends on precisely identifying feature points reflecting cardiac function. Moreover, traditional signal processing techniques used to mitigate random noise and breathing artifacts may inadvertently distort the amplitude and temporal characteristics of ICG signals. To address this issue, this study investigates a noise and artifact elimination method based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) and Particle Swarm Optimization-based Variational Mode Decomposition Algorithm (PSO-VMD). The goal is to preserve the amplitude and temporal features of ICG signals to ensure accurate feature point extraction and computation of associated cardiac parameters. Comparative analysis with signal processing methods employing various wavelet families and Ensemble Empirical Mode Decomposition (EEMD) in ICG signal processing applications reveals that the proposed method achieves superior signal-to-noise ratio (SNR) and lower root-mean-square error (RMSE), while demonstrating enhanced correlation and waveform consistency with the original signal.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01467-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Impedance cardiography (ICG) plays a crucial role in clinically evaluating cardiac systolic and diastolic functions, along with various other cardiac parameters. However, its accuracy heavily depends on precisely identifying feature points reflecting cardiac function. Moreover, traditional signal processing techniques used to mitigate random noise and breathing artifacts may inadvertently distort the amplitude and temporal characteristics of ICG signals. To address this issue, this study investigates a noise and artifact elimination method based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) and Particle Swarm Optimization-based Variational Mode Decomposition Algorithm (PSO-VMD). The goal is to preserve the amplitude and temporal features of ICG signals to ensure accurate feature point extraction and computation of associated cardiac parameters. Comparative analysis with signal processing methods employing various wavelet families and Ensemble Empirical Mode Decomposition (EEMD) in ICG signal processing applications reveals that the proposed method achieves superior signal-to-noise ratio (SNR) and lower root-mean-square error (RMSE), while demonstrating enhanced correlation and waveform consistency with the original signal.

Abstract Image

基于 ICEEMDAN 和 PSO-VMD 方法的 ICG 信号去噪。
阻抗心动图(ICG)在临床评估心脏收缩和舒张功能以及其他各种心脏参数方面发挥着至关重要的作用。然而,其准确性在很大程度上取决于能否精确识别反映心脏功能的特征点。此外,用于减少随机噪声和呼吸伪影的传统信号处理技术可能会无意中扭曲 ICG 信号的振幅和时间特征。为解决这一问题,本研究探讨了一种基于自适应噪声的改进型完全集合经验模式分解(ICEEMDAN)和基于粒子群优化的变异模式分解算法(PSO-VMD)的噪声和伪影消除方法。其目标是保留 ICG 信号的振幅和时间特征,以确保特征点提取和相关心脏参数计算的准确性。通过与 ICG 信号处理应用中采用的各种小波系列和集合经验模式分解(EEMD)的信号处理方法进行比较分析,发现所提出的方法实现了更高的信噪比(SNR)和更低的均方根误差(RMSE),同时与原始信号的相关性和波形一致性也得到了增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信