Deep learning pipeline reveals key moments in human embryonic development predictive of live birth after in vitro fertilization.

IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS
Biology Methods and Protocols Pub Date : 2024-07-19 eCollection Date: 2024-01-01 DOI:10.1093/biomethods/bpae052
Camilla Mapstone, Helen Hunter, Daniel Brison, Julia Handl, Berenika Plusa
{"title":"Deep learning pipeline reveals key moments in human embryonic development predictive of live birth after in vitro fertilization.","authors":"Camilla Mapstone, Helen Hunter, Daniel Brison, Julia Handl, Berenika Plusa","doi":"10.1093/biomethods/bpae052","DOIUrl":null,"url":null,"abstract":"<p><p>Demand for in vitro fertilization (IVF) treatment is growing; however, success rates remain low partly due to difficulty in selecting the best embryo to be transferred. Current manual assessments are subjective and may not take advantage of the most informative moments in embryo development. Here, we apply convolutional neural networks (CNNs) to identify key windows in pre-implantation human development that can be linked to embryo viability and are therefore suitable for the early grading of IVF embryos. We show how machine learning models trained at these developmental time points can be used to refine overall embryo viability assessment. Exploiting the well-known capabilities of transfer learning, we illustrate the performance of CNN models for very limited datasets, paving the way for the use on a clinic-by-clinic basis, catering for local data heterogeneity.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305813/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpae052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Demand for in vitro fertilization (IVF) treatment is growing; however, success rates remain low partly due to difficulty in selecting the best embryo to be transferred. Current manual assessments are subjective and may not take advantage of the most informative moments in embryo development. Here, we apply convolutional neural networks (CNNs) to identify key windows in pre-implantation human development that can be linked to embryo viability and are therefore suitable for the early grading of IVF embryos. We show how machine learning models trained at these developmental time points can be used to refine overall embryo viability assessment. Exploiting the well-known capabilities of transfer learning, we illustrate the performance of CNN models for very limited datasets, paving the way for the use on a clinic-by-clinic basis, catering for local data heterogeneity.

深度学习管道揭示了人类胚胎发育过程中可预测体外受精后活产的关键时刻。
体外受精(IVF)治疗的需求不断增长,但成功率仍然很低,部分原因是难以选择最佳胚胎进行移植。目前的人工评估比较主观,可能无法利用胚胎发育过程中信息量最大的时刻。在此,我们应用卷积神经网络(CNN)来识别植入前人类发育过程中的关键窗口,这些窗口可与胚胎存活率相关联,因此适合对试管婴儿胚胎进行早期分级。我们展示了如何利用在这些发育时间点上训练的机器学习模型来完善整体胚胎存活率评估。利用众所周知的迁移学习能力,我们展示了 CNN 模型在非常有限的数据集上的表现,为在各诊所基础上使用 CNN 模型铺平了道路,同时也照顾到了当地数据的异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信