Different DLCO Parameters as Predictors of Postoperative Pulmonary Complications in Mild Chronic Obstructive Pulmonary Disease Patients with Lung Cancer.

Q4 Medicine
Journal of Chest Surgery Pub Date : 2024-09-05 Epub Date: 2024-08-08 DOI:10.5090/jcs.24.010
Mil Hoo Kim, Joonseok Lee, Joung Woo Son, Beatrice Chia-Hui Shih, Woohyun Jeong, Jae Hyun Jeon, Kwhanmien Kim, Sanghoon Jheon, Sukki Cho
{"title":"Different DL<sub>CO</sub> Parameters as Predictors of Postoperative Pulmonary Complications in Mild Chronic Obstructive Pulmonary Disease Patients with Lung Cancer.","authors":"Mil Hoo Kim, Joonseok Lee, Joung Woo Son, Beatrice Chia-Hui Shih, Woohyun Jeong, Jae Hyun Jeon, Kwhanmien Kim, Sanghoon Jheon, Sukki Cho","doi":"10.5090/jcs.24.010","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Numerous studies have investigated methods of predicting postoperative pulmonary complications (PPCs) in lung cancer surgery, with chronic obstructive pulmonary disease (COPD) and low forced expiratory volume in 1 second (FEV<sub>1</sub>) being recognized as risk factors. However, predicting complications in COPD patients with preserved FEV<sub>1</sub> poses challenges. This study considered various diffusing capacity of the lung for carbon monoxide (DL<sub>CO</sub>) parameters as predictors of pulmonary complication risks in mild COPD patients undergoing lung resection.</p><p><strong>Methods: </strong>From January 2011 to December 2019, 2,798 patients undergoing segmentectomy or lobectomy for non-small cell lung cancer (NSCLC) were evaluated. Focusing on 709 mild COPD patients, excluding no COPD and moderate/severe cases, 3 models incorporating DL<sub>CO</sub>, predicted postoperative DL<sub>CO</sub> (ppoDL<sub>CO</sub>), and DL<sub>CO</sub> divided by the alveolar volume (DL<sub>CO</sub>/VA) were created for logistic regression. The Akaike information criterion and Bayes information criterion were analyzed to assess model fit, with lower values considered more consistent with actual data.</p><p><strong>Results: </strong>Significantly higher proportions of men, current smokers, and patients who underwent an open approach were observed in the PPC group. In multivariable regression, male sex, an open approach, DL<sub>CO</sub> <80%, ppoDL<sub>CO</sub> <60%, and DL<sub>CO</sub>/VA <80% significantly influenced PPC occurrence. The model using DL<sub>CO</sub>/VA had the best fit.</p><p><strong>Conclusion: </strong>Different DL<sub>CO</sub> parameters can predict PPCs in mild COPD patients after lung resection for NSCLC. The assessment of these factors using a multivariable logistic regression model suggested DL<sub>CO</sub>/VA as the most valuable predictor.</p>","PeriodicalId":34499,"journal":{"name":"Journal of Chest Surgery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392708/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chest Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5090/jcs.24.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Numerous studies have investigated methods of predicting postoperative pulmonary complications (PPCs) in lung cancer surgery, with chronic obstructive pulmonary disease (COPD) and low forced expiratory volume in 1 second (FEV1) being recognized as risk factors. However, predicting complications in COPD patients with preserved FEV1 poses challenges. This study considered various diffusing capacity of the lung for carbon monoxide (DLCO) parameters as predictors of pulmonary complication risks in mild COPD patients undergoing lung resection.

Methods: From January 2011 to December 2019, 2,798 patients undergoing segmentectomy or lobectomy for non-small cell lung cancer (NSCLC) were evaluated. Focusing on 709 mild COPD patients, excluding no COPD and moderate/severe cases, 3 models incorporating DLCO, predicted postoperative DLCO (ppoDLCO), and DLCO divided by the alveolar volume (DLCO/VA) were created for logistic regression. The Akaike information criterion and Bayes information criterion were analyzed to assess model fit, with lower values considered more consistent with actual data.

Results: Significantly higher proportions of men, current smokers, and patients who underwent an open approach were observed in the PPC group. In multivariable regression, male sex, an open approach, DLCO <80%, ppoDLCO <60%, and DLCO/VA <80% significantly influenced PPC occurrence. The model using DLCO/VA had the best fit.

Conclusion: Different DLCO parameters can predict PPCs in mild COPD patients after lung resection for NSCLC. The assessment of these factors using a multivariable logistic regression model suggested DLCO/VA as the most valuable predictor.

不同的 DLCO 参数是轻度慢性阻塞性肺病肺癌患者术后肺部并发症的预测指标。
背景:许多研究探讨了预测肺癌手术后肺部并发症(PPCs)的方法,其中慢性阻塞性肺疾病(COPD)和一秒钟用力呼气容积(FEV1)过低被认为是风险因素。然而,预测 FEV1 保持不变的 COPD 患者的并发症是一项挑战。本研究将各种一氧化碳肺弥散容量(DLCO)参数作为肺切除术轻度 COPD 患者肺部并发症风险的预测因素:2011年1月至2019年12月,对2798名接受非小细胞肺癌(NSCLC)分段切除术或肺叶切除术的患者进行了评估。以 709 例轻度慢性阻塞性肺病患者为重点,排除无慢性阻塞性肺病和中度/重度病例,建立了 3 个包含 DLCO、术后预测 DLCO(poDLCO)和 DLCO 除以肺泡容积(DLCO/VA)的逻辑回归模型。分析了 Akaike 信息准则和 Bayes 信息准则以评估模型的拟合度,认为较低的数值更符合实际数据:结果:PPC 组中男性、吸烟者和接受开放式手术的患者比例明显更高。在多变量回归中,男性、开放式方法、DLCO CO CO/VA CO/VA 的拟合效果最好:不同的 DLCO 参数可预测 NSCLC 肺切除术后轻度 COPD 患者的 PPC。结论:不同的 DLCO 参数可预测 NSCLC 肺切除术后轻度 COPD 患者的 PPC,使用多变量逻辑回归模型对这些因素进行评估后发现,DLCO/VA 是最有价值的预测指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chest Surgery
Journal of Chest Surgery Medicine-Surgery
CiteScore
0.80
自引率
0.00%
发文量
76
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信