{"title":"Abcb4-defect cholangitis mouse model with hydrophobic bile acid composition by in vivo liver-specific gene deletion.","authors":"Kota Tsuruya, Keiko Yokoyama, Yusuke Mishima, Kinuyo Ida, Takuma Araki, Satsuki Ieda, Masato Ohtsuka, Yutaka Inagaki, Akira Honda, Tatehiro Kagawa, Akihide Kamiya","doi":"10.1016/j.jlr.2024.100616","DOIUrl":null,"url":null,"abstract":"<p><p>Progressive familial intrahepatic cholestasis (PFIC) is a liver disease that occurs during childhood and requires liver transplantation. ABCB4 is localized along the canalicular membranes of hepatocytes, transports phosphatidylcholine into bile, and its mutation causes PFIC3. Abcb4 gene-deficient mice established as animal models of PFIC3 exhibit cholestasis-induced liver injury. However, their phenotypes are often milder than those of human PFIC3, partly because of the existence of large amounts of less toxic hydrophilic bile acids synthesized by the rodent-specific enzymes Cyp2c70 and Cyp2a12. Mice with double deletions of Cyp2c70/Cyp2a12 (CYPDKO mice) have a human-like hydrophobic bile acid composition. PFIC-related gene mutations were induced in CYPDKO mice to determine whether these triple-gene-deficient mice are a better model for PFIC. To establish a PFIC3 mouse model using CYPDKO mice, we induced abcb4 gene deletion in vivo using adeno-associated viruses expressing SaCas9 under the control of a liver-specific promoter and abcb4-target gRNAs. Compared to Abcb4-deficient wild-type mice, Abcb4-deficient CYPDKO mice showed more pronounced liver injury along with an elevation of inflammatory and fibrotic markers. The proliferation of intrahepatic bile ductal cells and hematopoietic cell infiltration were also observed. CYPDKO/abcb4-deficient mice show a predominance of taurine-conjugated chenodeoxycholic acid and lithocholic acid in the liver. In addition, phospholipid levels in the gallbladder bile were barely detectable. Mice with both human-like bile acid composition and Abcb4-defect exhibit severe cholestatic liver injury and are useful for studying human cholestatic diseases and developing new treatments.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100616"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2024.100616","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is a liver disease that occurs during childhood and requires liver transplantation. ABCB4 is localized along the canalicular membranes of hepatocytes, transports phosphatidylcholine into bile, and its mutation causes PFIC3. Abcb4 gene-deficient mice established as animal models of PFIC3 exhibit cholestasis-induced liver injury. However, their phenotypes are often milder than those of human PFIC3, partly because of the existence of large amounts of less toxic hydrophilic bile acids synthesized by the rodent-specific enzymes Cyp2c70 and Cyp2a12. Mice with double deletions of Cyp2c70/Cyp2a12 (CYPDKO mice) have a human-like hydrophobic bile acid composition. PFIC-related gene mutations were induced in CYPDKO mice to determine whether these triple-gene-deficient mice are a better model for PFIC. To establish a PFIC3 mouse model using CYPDKO mice, we induced abcb4 gene deletion in vivo using adeno-associated viruses expressing SaCas9 under the control of a liver-specific promoter and abcb4-target gRNAs. Compared to Abcb4-deficient wild-type mice, Abcb4-deficient CYPDKO mice showed more pronounced liver injury along with an elevation of inflammatory and fibrotic markers. The proliferation of intrahepatic bile ductal cells and hematopoietic cell infiltration were also observed. CYPDKO/abcb4-deficient mice show a predominance of taurine-conjugated chenodeoxycholic acid and lithocholic acid in the liver. In addition, phospholipid levels in the gallbladder bile were barely detectable. Mice with both human-like bile acid composition and Abcb4-defect exhibit severe cholestatic liver injury and are useful for studying human cholestatic diseases and developing new treatments.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.