Daniel Martins , Maryam Abbasi , Conceição Egas , Joel P. Arrais
{"title":"Enhancing schizophrenia phenotype prediction from genotype data through knowledge-driven deep neural network models","authors":"Daniel Martins , Maryam Abbasi , Conceição Egas , Joel P. Arrais","doi":"10.1016/j.ygeno.2024.110910","DOIUrl":null,"url":null,"abstract":"<div><p>This article explores deep learning model design, drawing inspiration from the omnigenic model and genetic heterogeneity concepts, to improve schizophrenia prediction using genotype data. It introduces an innovative three-step approach leveraging neural networks' capabilities to efficiently handle genetic interactions. A locally connected network initially routes input data from variants to their corresponding genes. The second step employs an Encoder-Decoder to capture relationships among identified genes. The final model integrates knowledge from the first two and incorporates a parallel component to consider the effects of additional genes. This expansion enhances prediction scores by considering a larger number of genes. Trained models achieved an average AUC of 0.83, surpassing other genotype-trained models and matching gene expression dataset-based approaches. Additionally, tests on held-out sets reported an average sensitivity of 0.72 and an accuracy of 0.76, aligning with schizophrenia heritability predictions. Moreover, the study addresses genetic heterogeneity challenges by considering diverse population subsets.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001319/pdfft?md5=05dc9164810795ff25d26a05f27f02e0&pid=1-s2.0-S0888754324001319-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324001319","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article explores deep learning model design, drawing inspiration from the omnigenic model and genetic heterogeneity concepts, to improve schizophrenia prediction using genotype data. It introduces an innovative three-step approach leveraging neural networks' capabilities to efficiently handle genetic interactions. A locally connected network initially routes input data from variants to their corresponding genes. The second step employs an Encoder-Decoder to capture relationships among identified genes. The final model integrates knowledge from the first two and incorporates a parallel component to consider the effects of additional genes. This expansion enhances prediction scores by considering a larger number of genes. Trained models achieved an average AUC of 0.83, surpassing other genotype-trained models and matching gene expression dataset-based approaches. Additionally, tests on held-out sets reported an average sensitivity of 0.72 and an accuracy of 0.76, aligning with schizophrenia heritability predictions. Moreover, the study addresses genetic heterogeneity challenges by considering diverse population subsets.