Cross-species transcriptomics reveals differential regulation of essential photosynthesis genes in Hirschfeldia incana.

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY
Francesco Garassino, Sofia Bengoa Luoni, Tommaso Cumerlato, Francisca Reyes Marquez, Jeremy Harbinson, Mark G M Aarts, Harm Nijveen, Sandra Smit
{"title":"Cross-species transcriptomics reveals differential regulation of essential photosynthesis genes in Hirschfeldia incana.","authors":"Francesco Garassino, Sofia Bengoa Luoni, Tommaso Cumerlato, Francisca Reyes Marquez, Jeremy Harbinson, Mark G M Aarts, Harm Nijveen, Sandra Smit","doi":"10.1093/g3journal/jkae175","DOIUrl":null,"url":null,"abstract":"<p><p>Photosynthesis is the only yield-related trait not yet substantially improved by plant breeding. Previously, we have established H. incana as the model plant for high photosynthetic light-use efficiency (LUE). Now we aim to unravel the genetic basis of this trait in H. incana, potentially contributing to the improvement of photosynthetic LUE in other species. Here, we compare its transcriptomic response to high light with that of Arabidopsis thaliana, Brassica rapa, and Brassica nigra, 3 fellow Brassicaceae members with lower photosynthetic LUE. We built a high-light, high-uniformity growing environment, in which the plants developed normally without signs of stress. We compared gene expression in contrasting light conditions across species, utilizing a panproteome to identify orthologous proteins. In-depth analysis of 3 key photosynthetic pathways showed a general trend of lower gene expression under high-light conditions for all 4 species. However, several photosynthesis-related genes in H. incana break this trend. We observed cases of constitutive higher expression (like antenna protein LHCB8), treatment-dependent differential expression (as for PSBE), and cumulative higher expression through simultaneous expression of multiple gene copies (like LHCA6). Thus, H. incana shows differential regulation of essential photosynthesis genes, with the light-harvesting complex as the first point of deviation. The effect of these expression differences on protein abundance and turnover, and ultimately the high photosynthetic LUE phenotype is relevant for further investigation. Furthermore, this transcriptomic resource of plants fully grown under, rather than briefly exposed to, a very high irradiance, will support the development of highly efficient photosynthesis in crops.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457080/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae175","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Photosynthesis is the only yield-related trait not yet substantially improved by plant breeding. Previously, we have established H. incana as the model plant for high photosynthetic light-use efficiency (LUE). Now we aim to unravel the genetic basis of this trait in H. incana, potentially contributing to the improvement of photosynthetic LUE in other species. Here, we compare its transcriptomic response to high light with that of Arabidopsis thaliana, Brassica rapa, and Brassica nigra, 3 fellow Brassicaceae members with lower photosynthetic LUE. We built a high-light, high-uniformity growing environment, in which the plants developed normally without signs of stress. We compared gene expression in contrasting light conditions across species, utilizing a panproteome to identify orthologous proteins. In-depth analysis of 3 key photosynthetic pathways showed a general trend of lower gene expression under high-light conditions for all 4 species. However, several photosynthesis-related genes in H. incana break this trend. We observed cases of constitutive higher expression (like antenna protein LHCB8), treatment-dependent differential expression (as for PSBE), and cumulative higher expression through simultaneous expression of multiple gene copies (like LHCA6). Thus, H. incana shows differential regulation of essential photosynthesis genes, with the light-harvesting complex as the first point of deviation. The effect of these expression differences on protein abundance and turnover, and ultimately the high photosynthetic LUE phenotype is relevant for further investigation. Furthermore, this transcriptomic resource of plants fully grown under, rather than briefly exposed to, a very high irradiance, will support the development of highly efficient photosynthesis in crops.

跨物种转录组学揭示了 Hirschfeldia incana 中重要光合作用基因的差异调控。
光合作用是植物育种中唯一尚未大幅改善的与产量相关的性状。在此之前,我们已将 Hirschfeldia incana 确立为高光合光利用效率(LUE)的模式植物。现在,我们的目标是揭示 H. incana 这一性状的遗传基础,从而为提高其他物种的光合光利用效率做出贡献。在这里,我们将其对强光的转录组反应与拟南芥、芸苔属和黑芸苔的转录组反应进行了比较,拟南芥、芸苔属和黑芸苔是三种光合利用效率较低的十字花科植物。我们建立了一个高光照、高均匀度的生长环境,植物在其中正常生长,没有出现应激迹象。我们比较了不同物种在不同光照条件下的基因表达,利用泛蛋白质组来识别同源蛋白。对三种关键光合作用途径的深入分析显示,在高光照条件下,所有四个物种的基因表达量普遍较低。然而,H. incana 的几个光合作用相关基因打破了这一趋势。我们观察到了组成型高表达(如触角蛋白 LHCB8)、依赖处理的差异表达(如 PSBE)以及通过多个基因拷贝同时表达而累积的高表达(如 LHCA6)。因此,Hirschfeldia incana 表现出对基本光合作用基因的不同调控,而采光复合体是第一个偏离点。这些表达差异对蛋白质丰度和周转的影响,以及最终对高光合作用 LUE 表型的影响有待进一步研究。此外,这种在极高辐照度下而不是短暂暴露下完全生长的植物转录组资源将支持作物高效光合作用的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信