{"title":"Distinct granzyme k expression in immune cells: a single-cell rna-seq meta-analysis.","authors":"Hyeon-Young Kim, Hongseok Ha","doi":"10.1007/s13258-024-01555-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Granzymes are essential serine proteases in cytotoxic T cells and natural killer (NK) cells, with GZMK's expression being less understood. This study aims to uncover GZMK expression profiles across various immune cell types using single-cell RNA sequencing meta-analysis.</p><p><strong>Objective: </strong>This study aims to uncover GZMK expression profiles across various immune cell types using single-cell RNA sequencing meta-analysis.</p><p><strong>Methods: </strong>We conducted a meta-analysis using cellxgene, an interactive data exploration platform developed by the Chan Zuckerberg Initiative. We focused on mature T cells, NK cells, B cells, and NKT cells. We also checked transcription factor binding sites at the granzyme gene promoter regions using JASPAR. Comparative analysis was also done using mouse single-cell RNA sequencing data.</p><p><strong>Results: </strong>GZMK was the most lowly expressed in NK cells and mature NKT cells in most tissues except for colon and lymph nodes. In mature T cells, GZMK is similarly or more highly expressed than other granzymes. HBCA data revealed weak expression of GZMK in NK cells but strong expression in effector memory CD8-positive, alpha-beta T cells. Combined data shows no significant difference in GZMK expression between cell types. Subtype analysis shows that GZMK expression was higher in CD16-negative, CD56-bright NK cells when compared to CD16-positive, CD56-dim NK cells. We also identified unique transcription factor binding sites for GZMK. While this pattern in mouse data with low Gzmk expression in NK cells and higher T cells was repeated.</p><p><strong>Conclusion: </strong>GZMK expression is distinctively regulated among immune cells and tissues, with unique promoter regions and transcription factor binding sites contributing to this differential expression. These insights into GZMK's role in immune function and regulation offer potential therapeutic targets.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01555-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Granzymes are essential serine proteases in cytotoxic T cells and natural killer (NK) cells, with GZMK's expression being less understood. This study aims to uncover GZMK expression profiles across various immune cell types using single-cell RNA sequencing meta-analysis.
Objective: This study aims to uncover GZMK expression profiles across various immune cell types using single-cell RNA sequencing meta-analysis.
Methods: We conducted a meta-analysis using cellxgene, an interactive data exploration platform developed by the Chan Zuckerberg Initiative. We focused on mature T cells, NK cells, B cells, and NKT cells. We also checked transcription factor binding sites at the granzyme gene promoter regions using JASPAR. Comparative analysis was also done using mouse single-cell RNA sequencing data.
Results: GZMK was the most lowly expressed in NK cells and mature NKT cells in most tissues except for colon and lymph nodes. In mature T cells, GZMK is similarly or more highly expressed than other granzymes. HBCA data revealed weak expression of GZMK in NK cells but strong expression in effector memory CD8-positive, alpha-beta T cells. Combined data shows no significant difference in GZMK expression between cell types. Subtype analysis shows that GZMK expression was higher in CD16-negative, CD56-bright NK cells when compared to CD16-positive, CD56-dim NK cells. We also identified unique transcription factor binding sites for GZMK. While this pattern in mouse data with low Gzmk expression in NK cells and higher T cells was repeated.
Conclusion: GZMK expression is distinctively regulated among immune cells and tissues, with unique promoter regions and transcription factor binding sites contributing to this differential expression. These insights into GZMK's role in immune function and regulation offer potential therapeutic targets.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.