Repurposing myoglobin into a carbene transferase for a [2,3]-sigmatropic Sommelet-Hauser rearrangement

IF 3.8 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Manon Pujol , Lison Degeilh , Thibault Sauty de Chalon , Marius Réglier , A. Jalila Simaan , Christophe Decroos
{"title":"Repurposing myoglobin into a carbene transferase for a [2,3]-sigmatropic Sommelet-Hauser rearrangement","authors":"Manon Pujol ,&nbsp;Lison Degeilh ,&nbsp;Thibault Sauty de Chalon ,&nbsp;Marius Réglier ,&nbsp;A. Jalila Simaan ,&nbsp;Christophe Decroos","doi":"10.1016/j.jinorgbio.2024.112688","DOIUrl":null,"url":null,"abstract":"<div><p>New-to-Nature biocatalysis has emerged as a promising tool in organic synthesis thanks to progress in protein engineering. Notably, hemeproteins have been evolved into robust catalysts for carbene and nitrene transfers and related sigmatropic rearrangements. In this work, we report the first example of a [2,3]-sigmatropic Sommelet-Hauser rearrangement initiated by a carbene transfer of the sperm whale myoglobin mutant L29S,H64V,V68F that was previously reported to catalyze the mechanistically similar [2,3]-sigmatropic Doyle-Kirmse rearrangement. This repurposed heme enzyme catalyzes the Sommelet-Hauser rearrangement between ethyl diazoacetate and benzyl thioethers bearing strong electron-withdrawing substituents with good yields and enantiomeric excess. Optimized catalytic conditions in the absence of any reductant led to an increased asymmetric induction with up to 59% enantiomeric excess. This myoglobin mutant is therefore one of the few catalysts for the asymmetric Sommelet-Hauser rearrangement. This work broadens the scope of abiological reactions catalyzed by iron-carbene transferases with a new example of asymmetric sigmatropic rearrangement.</p></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013424002125","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

New-to-Nature biocatalysis has emerged as a promising tool in organic synthesis thanks to progress in protein engineering. Notably, hemeproteins have been evolved into robust catalysts for carbene and nitrene transfers and related sigmatropic rearrangements. In this work, we report the first example of a [2,3]-sigmatropic Sommelet-Hauser rearrangement initiated by a carbene transfer of the sperm whale myoglobin mutant L29S,H64V,V68F that was previously reported to catalyze the mechanistically similar [2,3]-sigmatropic Doyle-Kirmse rearrangement. This repurposed heme enzyme catalyzes the Sommelet-Hauser rearrangement between ethyl diazoacetate and benzyl thioethers bearing strong electron-withdrawing substituents with good yields and enantiomeric excess. Optimized catalytic conditions in the absence of any reductant led to an increased asymmetric induction with up to 59% enantiomeric excess. This myoglobin mutant is therefore one of the few catalysts for the asymmetric Sommelet-Hauser rearrangement. This work broadens the scope of abiological reactions catalyzed by iron-carbene transferases with a new example of asymmetric sigmatropic rearrangement.

Abstract Image

将肌红蛋白转化为碳烯转移酶,用于[2,3]-对位索美莱-豪泽尔重排。
得益于蛋白质工程学的进步,新自然生物催化已成为有机合成中一种前景广阔的工具。值得注意的是,血红蛋白已经发展成为碳烯和腈转移及相关等位重排的强力催化剂。在这项工作中,我们首次报道了由抹香鲸肌红蛋白突变体 L29S,H64V,V68F 的碳烯转移引发的 [2,3]-sigmatropic Sommelet-Hauser 重排的实例。这种重新设计的血红素酶能催化重氮乙酸乙酯与带有强夺电子取代基的硫代苄基之间的索姆莱特-豪泽尔重排反应,并具有良好的产率和对映体过量。在不使用任何还原剂的情况下,优化催化条件可增加不对称诱导,对映体过量率高达 59%。因此,这种肌红蛋白突变体是为数不多的不对称索姆雷特-豪泽尔重排催化剂之一。这项工作拓宽了铁-烯转移酶催化的生物反应范围,提供了一个不对称对称重排的新实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inorganic Biochemistry
Journal of Inorganic Biochemistry 生物-生化与分子生物学
CiteScore
7.00
自引率
10.30%
发文量
336
审稿时长
41 days
期刊介绍: The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信