Monoclonal Antibody Delivery Using 3D Printed Biobased Hollow μNe3dle Arrays for the Treatment of Osteoporosis.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-09-02 Epub Date: 2024-08-07 DOI:10.1021/acs.molpharmaceut.4c00379
Md Jasim Uddin, Sophia Nikoletta Economidou, Léa Guiraud, Mohsin Kazi, Fars K Alanazi, Dennis Douroumis
{"title":"Monoclonal Antibody Delivery Using 3D Printed Biobased Hollow μNe3dle Arrays for the Treatment of Osteoporosis.","authors":"Md Jasim Uddin, Sophia Nikoletta Economidou, Léa Guiraud, Mohsin Kazi, Fars K Alanazi, Dennis Douroumis","doi":"10.1021/acs.molpharmaceut.4c00379","DOIUrl":null,"url":null,"abstract":"<p><p>Transdermal microneedles have demonstrated promising potential as an alternative to typical drug administration routes for the treatment of various diseases. As microneedles offer lower administration burden with enhanced patient adherence and reduced ecological footprint, there is a need for further exploitation of microneedle devices. One of the main objectives of this work was to initially develop an innovative biobased photocurable resin with high biobased carbon content comprising isobornyl acrylate (IBA) and pentaerythritol tetraacrylate blends (50:50 wt/wt). The optimization of the printing and curing process resulted in μNe3dle arrays with durable mechanical properties and piercing capacity. Another objective of the work was to employ the 3D printed hollow μNe3dles for the treatment of osteoporosis in vivo. The 3D printed μNe3dle arrays were used to administer denosumab (Dmab), a monoclonal antibody, to osteoporotic mice, and the serum concentrations of critical bone minerals were monitored for six months to assess recovery. It was found that the Dmab administered by the 3D printed μNe3dles showed fast in vitro rates and induced an enhanced therapeutic effect in restoring bone-related minerals compared to subcutaneous injections. The findings of this study introduce a novel green approach with a low ecological footprint for 3D printing of biobased μNe3dles, which can be tailored to improve clinical outcomes and patient compliance for chronic diseases.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372832/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00379","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transdermal microneedles have demonstrated promising potential as an alternative to typical drug administration routes for the treatment of various diseases. As microneedles offer lower administration burden with enhanced patient adherence and reduced ecological footprint, there is a need for further exploitation of microneedle devices. One of the main objectives of this work was to initially develop an innovative biobased photocurable resin with high biobased carbon content comprising isobornyl acrylate (IBA) and pentaerythritol tetraacrylate blends (50:50 wt/wt). The optimization of the printing and curing process resulted in μNe3dle arrays with durable mechanical properties and piercing capacity. Another objective of the work was to employ the 3D printed hollow μNe3dles for the treatment of osteoporosis in vivo. The 3D printed μNe3dle arrays were used to administer denosumab (Dmab), a monoclonal antibody, to osteoporotic mice, and the serum concentrations of critical bone minerals were monitored for six months to assess recovery. It was found that the Dmab administered by the 3D printed μNe3dles showed fast in vitro rates and induced an enhanced therapeutic effect in restoring bone-related minerals compared to subcutaneous injections. The findings of this study introduce a novel green approach with a low ecological footprint for 3D printing of biobased μNe3dles, which can be tailored to improve clinical outcomes and patient compliance for chronic diseases.

Abstract Image

利用三维打印生物基中空μNe3dle阵列输送单克隆抗体以治疗骨质疏松症。
透皮微针作为治疗各种疾病的典型给药途径的替代品,已显示出巨大的潜力。由于微针可降低给药负担、提高患者依从性并减少生态足迹,因此有必要进一步开发微针设备。这项工作的主要目标之一是初步开发出一种生物基碳含量高的创新型光固化树脂,由丙烯酸异冰片酯(IBA)和季戊四醇四丙烯酸酯混合物(重量比为 50:50)组成。通过优化印刷和固化工艺,μNe3dle 阵列具有持久的机械性能和穿刺能力。这项工作的另一个目标是将三维打印的空心μNe3dles用于体内骨质疏松症的治疗。利用三维打印的μNe3dle阵列给骨质疏松症小鼠注射单克隆抗体地诺单抗(Dmab),并在六个月内监测血清中关键骨矿物质的浓度,以评估恢复情况。研究发现,与皮下注射相比,通过三维打印μNe3dles注射的钙单抗在体外显示出快速的吸收率,并在恢复骨相关矿物质方面诱导出更强的治疗效果。这项研究的结果为三维打印生物基μNe3dles引入了一种新型绿色方法,其生态足迹小,可量身定制,以改善慢性疾病的临床疗效和患者依从性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信