Thionation-Induced Enhancement of Optical and Electronic Properties in NDI Molecule for Molecular Electronic Applications: A Computational Study Using DFT/TD-DFT and QTAIM Theory

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Hamid Hadi, Hamid Reza Shamlouei
{"title":"Thionation-Induced Enhancement of Optical and Electronic Properties in NDI Molecule for Molecular Electronic Applications: A Computational Study Using DFT/TD-DFT and QTAIM Theory","authors":"Hamid Hadi,&nbsp;Hamid Reza Shamlouei","doi":"10.1002/adts.202400151","DOIUrl":null,"url":null,"abstract":"<p>The study investigates the impact of thionation on N,N'-di(dodecyl)-4,5,8,9-naphthalene diimide (NDI) through computational methods such as density functional theory (DFT/TD-DFT), quantum theory of atoms in molecules (QTAIM), and Landauer theory (LT). Thionation, involving the replacement of diamide oxygens with sulfurs in NDI, significantly enhances quantum-electronic/thermoelectric properties. Computational analyzes of energy of frontier orbitals HOMO/LUMO, dipole moment, polarizability, first superpolarizability, UV spectrum, and cohesive energy show the superior performance of the thione structure (M2) compared to the pristine structure (M1). Thionation decreased the energy gap from 01.3 eV (in M1 structure) to 1.87 eV (in M2 structure). The absorption wavelength in the pristine structure (M1) is calculated to be 507 nm, which increased to 1067 nm after thionation (M2). Cohesive energy values for each of M1 and M2 structures are calculated as 12.76 and 12.89 Kcal mol<sup>−1</sup>, respectively, which indicates the improvement of stability after thionation. After connecting M1 and M2 to gold electrodes (Au-M1-Au and Au-M2-Au) and applying electric fields, the Au-M2-Au structure shows a lower energy gap, lower thermoelectric activity and higher conductivity at field intensities with higher than 140 × 10<sup>−4</sup> (a.u.), indicating its use as a field-effect molecular device (such as molecular wire or molecular switch).</p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adts.202400151","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The study investigates the impact of thionation on N,N'-di(dodecyl)-4,5,8,9-naphthalene diimide (NDI) through computational methods such as density functional theory (DFT/TD-DFT), quantum theory of atoms in molecules (QTAIM), and Landauer theory (LT). Thionation, involving the replacement of diamide oxygens with sulfurs in NDI, significantly enhances quantum-electronic/thermoelectric properties. Computational analyzes of energy of frontier orbitals HOMO/LUMO, dipole moment, polarizability, first superpolarizability, UV spectrum, and cohesive energy show the superior performance of the thione structure (M2) compared to the pristine structure (M1). Thionation decreased the energy gap from 01.3 eV (in M1 structure) to 1.87 eV (in M2 structure). The absorption wavelength in the pristine structure (M1) is calculated to be 507 nm, which increased to 1067 nm after thionation (M2). Cohesive energy values for each of M1 and M2 structures are calculated as 12.76 and 12.89 Kcal mol−1, respectively, which indicates the improvement of stability after thionation. After connecting M1 and M2 to gold electrodes (Au-M1-Au and Au-M2-Au) and applying electric fields, the Au-M2-Au structure shows a lower energy gap, lower thermoelectric activity and higher conductivity at field intensities with higher than 140 × 10−4 (a.u.), indicating its use as a field-effect molecular device (such as molecular wire or molecular switch).

Abstract Image

利用 DFT/TD-DFT 和 QTAIM 理论进行的计算研究:使用 DFT/TD-DFT 和 QTAIM 理论的计算研究
本研究通过密度泛函理论(DFT/TD-DFT)、分子中原子量子理论(QTAIM)和兰道尔理论(LT)等计算方法,研究了硫离子化对 N,N'-二(十二烷基)-4,5,8,9-萘二亚胺(NDI)的影响。NDI中的硫离子取代二酰胺氧原子,显著增强了量子电子/热电特性。对前沿轨道能量 HOMO/LUMO、偶极矩、极化率、第一超极化率、紫外光谱和内聚能的计算分析表明,与原始结构(M1)相比,硫酮结构(M2)具有更优越的性能。亚硫酰化将能隙从 01.3 eV(M1 结构)降至 1.87 eV(M2 结构)。根据计算,原始结构(M1)的吸收波长为 507 纳米,而经过亚硫酰化处理后(M2)的吸收波长增至 1067 纳米。经计算,M1 和 M2 结构的内聚能值分别为 12.76 和 12.89 Kcal mol-1,这表明硫离子化后的稳定性有所提高。将 M1 和 M2 与金电极(Au-M1-Au 和 Au-M2-Au)连接并施加电场后,Au-M2-Au 结构在电场强度高于 140 × 10-4 (a.u.) 时显示出较低的能隙、较低的热电活性和较高的电导率,表明它可用作场效应分子器件(如分子线或分子开关)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信