Convergence of Numerical Methods for the Navier–Stokes–Fourier System Driven by Uncertain Initial/Boundary Data

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Eduard Feireisl, Mária Lukáčová-Medvid’ová, Bangwei She, Yuhuan Yuan
{"title":"Convergence of Numerical Methods for the Navier–Stokes–Fourier System Driven by Uncertain Initial/Boundary Data","authors":"Eduard Feireisl, Mária Lukáčová-Medvid’ová, Bangwei She, Yuhuan Yuan","doi":"10.1007/s10208-024-09666-7","DOIUrl":null,"url":null,"abstract":"<p>We consider the Navier–Stokes–Fourier system governing the motion of a general compressible, heat conducting, Newtonian fluid driven by random initial/boundary data. Convergence of the stochastic collocation and Monte Carlo numerical methods is shown under the hypothesis that approximate solutions are bounded in probability. Abstract results are illustrated by numerical experiments for the Rayleigh–Bénard convection problem.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09666-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Navier–Stokes–Fourier system governing the motion of a general compressible, heat conducting, Newtonian fluid driven by random initial/boundary data. Convergence of the stochastic collocation and Monte Carlo numerical methods is shown under the hypothesis that approximate solutions are bounded in probability. Abstract results are illustrated by numerical experiments for the Rayleigh–Bénard convection problem.

Abstract Image

不确定初始/边界数据驱动的纳维-斯托克斯-傅里叶系统数值方法的收敛性
我们考虑了支配由随机初始/边界数据驱动的一般可压缩、导热、牛顿流体运动的纳维-斯托克斯-傅里叶系统。在近似解在概率上是有界的假设条件下,证明了随机配位和蒙特卡罗数值方法的收敛性。雷利-贝纳德对流问题的数值实验说明了抽象结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信