Space-time Trade-offs for the LCP Array of Wheeler DFAs.

Nicola Cotumaccio, Travis Gagie, Dominik Köppl, Nicola Prezza
{"title":"Space-time Trade-offs for the LCP Array of Wheeler DFAs.","authors":"Nicola Cotumaccio, Travis Gagie, Dominik Köppl, Nicola Prezza","doi":"10.1007/978-3-031-43980-3_12","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, Conte et al. generalized the longest-common prefix (LCP) array from strings to Wheeler DFAs, and they showed that it can be used to efficiently determine matching statistics on a Wheeler DFA [DCC 2023]. However, storing the LCP array requires <math><mrow><mi>O</mi> <mfenced><mrow><mi>n</mi> <mi>log</mi> <mi>n</mi></mrow> </mfenced> </mrow> </math> bits, <math><mi>n</mi></math> being the number of states, while the compact representation of Wheeler DFAs often requires much less space. In particular, the BOSS representation of a de Bruijn graph only requires a linear number of bits, if the size of alphabet is constant. In this paper, we propose a sampling technique that allows to access an entry of the LCP array in logarithmic time by only storing a linear number of bits. We use our technique to provide a space-time tradeoff to compute matching statistics on a Wheeler DFA. In addition, we show that by augmenting the BOSS representation of a <math><mi>k</mi></math> -th order de Bruijn graph with a linear number of bits we can navigate the underlying variable-order de Bruijn graph in time logarithmic in <math><mi>k</mi></math> , thus improving a previous bound by Boucher et al. which was linear in <math><mi>k</mi></math> [DCC 2015].</p>","PeriodicalId":520001,"journal":{"name":"International Symposium on String Processing and Information Retrieval : SPIRE ... : proceedings. SPIRE (Symposium)","volume":"14240 ","pages":"143-156"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301794/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on String Processing and Information Retrieval : SPIRE ... : proceedings. SPIRE (Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43980-3_12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Conte et al. generalized the longest-common prefix (LCP) array from strings to Wheeler DFAs, and they showed that it can be used to efficiently determine matching statistics on a Wheeler DFA [DCC 2023]. However, storing the LCP array requires O n log n bits, n being the number of states, while the compact representation of Wheeler DFAs often requires much less space. In particular, the BOSS representation of a de Bruijn graph only requires a linear number of bits, if the size of alphabet is constant. In this paper, we propose a sampling technique that allows to access an entry of the LCP array in logarithmic time by only storing a linear number of bits. We use our technique to provide a space-time tradeoff to compute matching statistics on a Wheeler DFA. In addition, we show that by augmenting the BOSS representation of a k -th order de Bruijn graph with a linear number of bits we can navigate the underlying variable-order de Bruijn graph in time logarithmic in k , thus improving a previous bound by Boucher et al. which was linear in k [DCC 2015].

惠勒 DFA LCP 阵列的时空权衡。
最近,Conte 等人将最长共用前缀(LCP)数组从字符串推广到惠勒 DFA,并证明它可用于高效确定惠勒 DFA 的匹配统计[DCC 2023]。然而,存储 LCP 数组需要 O n log n 位(n 为状态数),而惠勒 DFA 的紧凑表示通常需要更少的空间。特别是,如果字母表的大小不变,de Bruijn 图的 BOSS 表示只需要线性比特数。在本文中,我们提出了一种采样技术,只需存储线性比特数,就能在对数时间内访问 LCP 阵列的一个条目。我们利用该技术提供了一种时空折衷方法,用于计算惠勒 DFA 的匹配统计数据。此外,我们还证明,通过用线性比特数增强 k 阶 de Bruijn 图的 BOSS 表示,我们可以在以 k 为对数的时间内导航底层变阶 de Bruijn 图,从而改进了 Boucher 等人之前以 k 为线性的约束 [DCC 2015]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信