Guanghong Zhou, Yan Yang, Yi Liao, Lijuan Chen, Yang Yang, Jun Zou
{"title":"A pilot study of optical coherence tomography-guided transbronchial biopsy in peripheral pulmonary lesions.","authors":"Guanghong Zhou, Yan Yang, Yi Liao, Lijuan Chen, Yang Yang, Jun Zou","doi":"10.1080/17434440.2024.2389235","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The diagnosis of peripheral pulmonary lesions (PPLs) remains challenging. Despite advancements in guided transbronchial biopsy (TBB) techniques, diagnostic yields haven't reached ideal levels. Optical coherence tomography (OCT) has been developed for application in pulmonary diseases, yet no data existed evaluating effectiveness in diagnosing PPLs.</p><p><strong>Research design and methods: </strong>This study included patients who underwent OCT and radial endobronchial ultrasound (R-EBUS)-guided TBB. OCT and R-EBUS imaging features were analyzed to differentiate between benign and malignant PPLs and subtypes of lung cancer.</p><p><strong>Results: </strong>A total of 89 patients were included in this study. The diagnostic yield of OCT-guided TBB stood at 56.18%, R-EBUS-guided TBB was 83.15% (P<0.01). The accuracy of OCT to judge the nature of lesions was 92.59%, while R-EBUS was 77.92%. The accuracy of OCT in predicting squamous carcinoma (SCC) and adenocarcinoma were both 91.30%.</p><p><strong>Conclusions: </strong>Although the diagnostic yield of OCT-guided TBB fell short of that achieved by R-EBUS, OCT possessed the capability to judge the nature of lesions and guide the pathological classification of malignant lesions. Further extensive prospective studies are necessary to thoroughly assess the characteristics of this procedure.</p><p><strong>Clinical trial registration: </strong>https://register.clinicaltrials.gov/ identifier is NCT06419114.</p>","PeriodicalId":94006,"journal":{"name":"Expert review of medical devices","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert review of medical devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17434440.2024.2389235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The diagnosis of peripheral pulmonary lesions (PPLs) remains challenging. Despite advancements in guided transbronchial biopsy (TBB) techniques, diagnostic yields haven't reached ideal levels. Optical coherence tomography (OCT) has been developed for application in pulmonary diseases, yet no data existed evaluating effectiveness in diagnosing PPLs.
Research design and methods: This study included patients who underwent OCT and radial endobronchial ultrasound (R-EBUS)-guided TBB. OCT and R-EBUS imaging features were analyzed to differentiate between benign and malignant PPLs and subtypes of lung cancer.
Results: A total of 89 patients were included in this study. The diagnostic yield of OCT-guided TBB stood at 56.18%, R-EBUS-guided TBB was 83.15% (P<0.01). The accuracy of OCT to judge the nature of lesions was 92.59%, while R-EBUS was 77.92%. The accuracy of OCT in predicting squamous carcinoma (SCC) and adenocarcinoma were both 91.30%.
Conclusions: Although the diagnostic yield of OCT-guided TBB fell short of that achieved by R-EBUS, OCT possessed the capability to judge the nature of lesions and guide the pathological classification of malignant lesions. Further extensive prospective studies are necessary to thoroughly assess the characteristics of this procedure.
Clinical trial registration: https://register.clinicaltrials.gov/ identifier is NCT06419114.