A study of animal action segmentation algorithms across supervised, unsupervised, and semi-supervised learning paradigms.

ArXiv Pub Date : 2024-12-17
Ari Blau, Evan S Schaffer, Neeli Mishra, Nathaniel J Miska, The International Brain Laboratory, Liam Paninski, Matthew R Whiteway
{"title":"A study of animal action segmentation algorithms across supervised, unsupervised, and semi-supervised learning paradigms.","authors":"Ari Blau, Evan S Schaffer, Neeli Mishra, Nathaniel J Miska, The International Brain Laboratory, Liam Paninski, Matthew R Whiteway","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Action segmentation of behavioral videos is the process of labeling each frame as belonging to one or more discrete classes, and is a crucial component of many studies that investigate animal behavior. A wide range of algorithms exist to automatically parse discrete animal behavior, encompassing supervised, unsupervised, and semi-supervised learning paradigms. These algorithms -- which include tree-based models, deep neural networks, and graphical models -- differ widely in their structure and assumptions on the data. Using four datasets spanning multiple species -- fly, mouse, and human -- we systematically study how the outputs of these various algorithms align with manually annotated behaviors of interest. Along the way, we introduce a semi-supervised action segmentation model that bridges the gap between supervised deep neural networks and unsupervised graphical models. We find that fully supervised temporal convolutional networks with the addition of temporal information in the observations perform the best on our supervised metrics across all datasets.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Action segmentation of behavioral videos is the process of labeling each frame as belonging to one or more discrete classes, and is a crucial component of many studies that investigate animal behavior. A wide range of algorithms exist to automatically parse discrete animal behavior, encompassing supervised, unsupervised, and semi-supervised learning paradigms. These algorithms -- which include tree-based models, deep neural networks, and graphical models -- differ widely in their structure and assumptions on the data. Using four datasets spanning multiple species -- fly, mouse, and human -- we systematically study how the outputs of these various algorithms align with manually annotated behaviors of interest. Along the way, we introduce a semi-supervised action segmentation model that bridges the gap between supervised deep neural networks and unsupervised graphical models. We find that fully supervised temporal convolutional networks with the addition of temporal information in the observations perform the best on our supervised metrics across all datasets.

跨越监督、无监督和半监督学习范式的动物动作分割算法研究。
行为视频的动作分割是将每一帧标记为属于一个或多个离散类别的过程,是许多研究动物行为的重要组成部分。目前有多种自动解析离散动物行为的算法,包括监督、无监督和半监督学习范式。这些算法(包括基于树的模型、深度神经网络和图形模型)在结构和数据假设方面存在很大差异。我们利用跨越苍蝇、小鼠和人类等多个物种的四个数据集,系统地研究了这些不同算法的输出如何与人工标注的相关行为保持一致。在研究过程中,我们引入了一种半监督动作分割模型,该模型在有监督深度神经网络和无监督图形模型之间架起了一座桥梁。我们发现,在所有数据集上,完全监督的时间卷积网络在观察结果中添加了时间信息,在我们的监督指标上表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信