{"title":"Spontaneous Emergence of Robustness to Light Variation in CNNs With a Precortically Inspired Module","authors":"J. Petkovic;R. Fioresi","doi":"10.1162/neco_a_01691","DOIUrl":null,"url":null,"abstract":"The analogies between the mammalian primary visual cortex and the structure of CNNs used for image classification tasks suggest that the introduction of an additional preliminary convolutional module inspired by the mathematical modeling of the precortical neuronal circuits can improve robustness with respect to global light intensity and contrast variations in the input images. We validate this hypothesis using the popular databases MNIST, FashionMNIST, and SVHN for these variations once an extra module is added.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 9","pages":"1832-1853"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10661270/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The analogies between the mammalian primary visual cortex and the structure of CNNs used for image classification tasks suggest that the introduction of an additional preliminary convolutional module inspired by the mathematical modeling of the precortical neuronal circuits can improve robustness with respect to global light intensity and contrast variations in the input images. We validate this hypothesis using the popular databases MNIST, FashionMNIST, and SVHN for these variations once an extra module is added.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.