{"title":"Exploring cognitive load through neuropsychological features: an analysis using fNIRS-eye tracking.","authors":"Kaiwei Yu, Jiafa Chen, Xian Ding, Dawei Zhang","doi":"10.1007/s11517-024-03178-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cognition is crucial to brain function, and accurately classifying cognitive load is essential for understanding the psychological processes across tasks. This paper innovatively combines functional near-infrared spectroscopy (fNIRS) with eye tracking technology to delve into the classification of cognitive load at the neurocognitive level. This integration overcomes the limitations of a single modality, addressing challenges such as feature selection, high dimensionality, and insufficient sample capacity. We employ fNIRS-eye tracking technology to collect neural activity and eye tracking data during various cognitive tasks, followed by preprocessing. Using the maximum relevance minimum redundancy algorithm, we extract the most relevant features and evaluate their impact on the classification task. We evaluate the classification performance by building models (naive Bayes, support vector machine, K-nearest neighbors, and random forest) and employing cross-validation. The results demonstrate the effectiveness of fNIRS-eye tracking, the maximum relevance minimum redundancy algorithm, and machine learning techniques in discriminating cognitive load levels. This study emphasizes the impact of the number of features on performance, highlighting the need for an optimal feature set to improve accuracy. These findings advance our understanding of neuroscientific features related to cognitive load, propelling neural psychology research to deeper levels and holding significant implications for future cognitive science.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"45-57"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03178-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Cognition is crucial to brain function, and accurately classifying cognitive load is essential for understanding the psychological processes across tasks. This paper innovatively combines functional near-infrared spectroscopy (fNIRS) with eye tracking technology to delve into the classification of cognitive load at the neurocognitive level. This integration overcomes the limitations of a single modality, addressing challenges such as feature selection, high dimensionality, and insufficient sample capacity. We employ fNIRS-eye tracking technology to collect neural activity and eye tracking data during various cognitive tasks, followed by preprocessing. Using the maximum relevance minimum redundancy algorithm, we extract the most relevant features and evaluate their impact on the classification task. We evaluate the classification performance by building models (naive Bayes, support vector machine, K-nearest neighbors, and random forest) and employing cross-validation. The results demonstrate the effectiveness of fNIRS-eye tracking, the maximum relevance minimum redundancy algorithm, and machine learning techniques in discriminating cognitive load levels. This study emphasizes the impact of the number of features on performance, highlighting the need for an optimal feature set to improve accuracy. These findings advance our understanding of neuroscientific features related to cognitive load, propelling neural psychology research to deeper levels and holding significant implications for future cognitive science.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).