Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence.

IF 3.4 3区 医学 Q2 TOXICOLOGY
Christian I Rude, Lindsay B Wilson, Jane La Du, Priscila M Lalli, Sean M Colby, Katherine J Schultz, Jordan N Smith, Katrina M Waters, Robyn L Tanguay
{"title":"Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence.","authors":"Christian I Rude, Lindsay B Wilson, Jane La Du, Priscila M Lalli, Sean M Colby, Katherine J Schultz, Jordan N Smith, Katrina M Waters, Robyn L Tanguay","doi":"10.1093/toxsci/kfae098","DOIUrl":null,"url":null,"abstract":"<p><p>Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds frequently detected in the environment with widely varying toxicities. Many PAHs activate the aryl hydrocarbon receptor (AHR), inducing the expression of a battery of genes, including xenobiotic metabolizing enzymes like cytochrome P450s (CYPs); however, not all PAHs act via this mechanism. We screened several parent and substituted PAHs in in vitro AHR activation assays to classify their unique activity. Retene (1-methyl-7-isopropylphenanthrene) displays Ahr2-dependent teratogenicity in zebrafish, but did not activate human AHR or zebrafish Ahr2, suggesting a retene metabolite activates Ahr2 in zebrafish to induce developmental toxicity. To investigate the role of metabolism in retene toxicity, studies were performed to determine the functional role of cyp1a, cyp1b1, and the microbiome in retene toxicity, identify the zebrafish window of susceptibility, and measure retene uptake, loss, and metabolite formation in vivo. Cyp1a-null fish were generated using CRISPR-Cas9. Cyp1a-null fish showed increased sensitivity to retene toxicity, whereas Cyp1b1-null fish were less susceptible, and microbiome elimination had no significant effect. Zebrafish required exposure to retene between 24 and 48 hours post fertilization (hpf) to exhibit toxicity. After static exposure, retene concentrations in zebrafish embryos increased until 24 hpf, peaked between 24 and 36 hpf, and decreased rapidly thereafter. We detected retene metabolites at 36 and 48 hpf, indicating metabolic onset preceding toxicity. This study highlights the value of combining molecular and systems biology approaches with mechanistic and predictive toxicology to interrogate the role of biotransformation in AHR-dependent toxicity.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"50-68"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514837/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae098","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds frequently detected in the environment with widely varying toxicities. Many PAHs activate the aryl hydrocarbon receptor (AHR), inducing the expression of a battery of genes, including xenobiotic metabolizing enzymes like cytochrome P450s (CYPs); however, not all PAHs act via this mechanism. We screened several parent and substituted PAHs in in vitro AHR activation assays to classify their unique activity. Retene (1-methyl-7-isopropylphenanthrene) displays Ahr2-dependent teratogenicity in zebrafish, but did not activate human AHR or zebrafish Ahr2, suggesting a retene metabolite activates Ahr2 in zebrafish to induce developmental toxicity. To investigate the role of metabolism in retene toxicity, studies were performed to determine the functional role of cyp1a, cyp1b1, and the microbiome in retene toxicity, identify the zebrafish window of susceptibility, and measure retene uptake, loss, and metabolite formation in vivo. Cyp1a-null fish were generated using CRISPR-Cas9. Cyp1a-null fish showed increased sensitivity to retene toxicity, whereas Cyp1b1-null fish were less susceptible, and microbiome elimination had no significant effect. Zebrafish required exposure to retene between 24 and 48 hours post fertilization (hpf) to exhibit toxicity. After static exposure, retene concentrations in zebrafish embryos increased until 24 hpf, peaked between 24 and 36 hpf, and decreased rapidly thereafter. We detected retene metabolites at 36 and 48 hpf, indicating metabolic onset preceding toxicity. This study highlights the value of combining molecular and systems biology approaches with mechanistic and predictive toxicology to interrogate the role of biotransformation in AHR-dependent toxicity.

雷替尼的 AHR 依赖性毒性需要代谢能力。
多环芳烃(PAHs)是环境中经常检测到的一类有机化合物,其毒性差别很大。许多 PAHs 可激活芳基烃受体(AHR),诱导一系列基因的表达,包括细胞色素 P450s(CYPs)等异生物代谢酶;但并非所有 PAHs 都通过这种机制发挥作用。我们在体外 AHR 激活试验中筛选了几种母体和替代的 PAHs,对它们的独特活性进行了分类。雷替尼(1-甲基-7-异丙基菲)在斑马鱼体内显示出依赖于 Ahr2 的致畸性,但并未激活人类 AHR 或斑马鱼 Ahr2,这表明雷替尼代谢物在斑马鱼体内激活了 Ahr2,从而诱发发育毒性。为了研究新陈代谢在retene毒性中的作用,研究人员进行了研究,以确定cyp1a、cyp1b1和微生物组在retene毒性中的功能作用,确定斑马鱼的易感性窗口,并测量体内retene的吸收、损失和代谢物的形成。利用 CRISPR-Cas9 生成了 Cyp1a 缺失的斑马鱼。Cyp1a-null鱼对retene毒性的敏感性增加,而Cyp1b1-null鱼的敏感性降低,微生物组的消除没有显著影响。斑马鱼需要在受精后 24 小时到 48 小时之间接触网烯才能表现出毒性。静态暴露后,斑马鱼胚胎中的retene浓度在24 hpf之前一直在增加,在24至36 hpf之间达到峰值,之后迅速下降。我们在 36 和 48 hpf 检测到了网烯代谢物,这表明毒性发生之前就已经开始了新陈代谢。这项研究凸显了将分子和系统生物学方法与机理和预测毒理学相结合,以探究生物转化在 AHR 依赖性毒性中的作用的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicological Sciences
Toxicological Sciences 医学-毒理学
CiteScore
7.70
自引率
7.90%
发文量
118
审稿时长
1.5 months
期刊介绍: The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology. The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field. The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信