{"title":"Exact test and exact confidence interval for the Cox model.","authors":"Yongwu Shao, Zhishen Ye, Zhiwei Zhang","doi":"10.1002/sim.10189","DOIUrl":null,"url":null,"abstract":"<p><p>The Cox proportional hazards model is commonly used to analyze time-to-event data in clinical trials. Standard inference procedures for the Cox model are based on asymptotic approximations and may perform poorly when there are few events in one or both treatment groups, as may be the case when the event of interest is rare or when the experimental treatment is highly efficacious. In this article, we propose an exact test of equivalence and efficacy under a proportional hazard model with treatment effect as the only fixed effect, together with an exact confidence interval that is obtained by inverting the exact test. The proposed test is based on a conditional error method originally proposed for sample size reestimation problems. In the present context, the conditional error method is used to combine information from a sequence of hypergeometric distributions, one at each observed event time. The proposed procedures are evaluated in simulation studies and illustrated using real data from an HIV prevention trial. A companion R package \"ExactCox\" is available for download on CRAN.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"4499-4518"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sim.10189","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Cox proportional hazards model is commonly used to analyze time-to-event data in clinical trials. Standard inference procedures for the Cox model are based on asymptotic approximations and may perform poorly when there are few events in one or both treatment groups, as may be the case when the event of interest is rare or when the experimental treatment is highly efficacious. In this article, we propose an exact test of equivalence and efficacy under a proportional hazard model with treatment effect as the only fixed effect, together with an exact confidence interval that is obtained by inverting the exact test. The proposed test is based on a conditional error method originally proposed for sample size reestimation problems. In the present context, the conditional error method is used to combine information from a sequence of hypergeometric distributions, one at each observed event time. The proposed procedures are evaluated in simulation studies and illustrated using real data from an HIV prevention trial. A companion R package "ExactCox" is available for download on CRAN.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.