Enhanced phagocytosis associated with multinucleated microglia via Pyk2 inhibition in an acute β-amyloid infusion model.

IF 9.3 1区 医学 Q1 IMMUNOLOGY
Ji-Won Lee, Kaito Mizuno, Haruhisa Watanabe, In-Hee Lee, Takuya Tsumita, Kyoko Hida, Yasutaka Yawaka, Yoshimasa Kitagawa, Akira Hasebe, Tadahiro Iimura, Sek Won Kong
{"title":"Enhanced phagocytosis associated with multinucleated microglia via Pyk2 inhibition in an acute β-amyloid infusion model.","authors":"Ji-Won Lee, Kaito Mizuno, Haruhisa Watanabe, In-Hee Lee, Takuya Tsumita, Kyoko Hida, Yasutaka Yawaka, Yoshimasa Kitagawa, Akira Hasebe, Tadahiro Iimura, Sek Won Kong","doi":"10.1186/s12974-024-03192-7","DOIUrl":null,"url":null,"abstract":"<p><p>Multinucleated microglia have been observed in contexts associated with infection, inflammation, and aging. Though commonly linked to pathological conditions, the larger cell size of multinucleated microglia might enhance their phagocytic functions, potentially aiding in the clearance of brain debris and suggesting a reassessment of their pathological significance. To assess the phagocytic capacity of multinucleated microglia and its implications for brain debris clearance, we induced their formation by inhibiting Pyk2 activity using the pharmacological inhibitor PF-431396, which triggers cytokinesis regression. Multinucleated microglia demonstrate enhanced phagocytic function, as evidenced by their increased capacity to engulf β-amyloid (Aβ) oligomers. Concurrently, the phosphorylation of Pyk2, induced by Aβ peptide, was diminished upon treatment with a Pyk2 inhibitor (Pyk2-Inh, PF-431396). Furthermore, the increased expression of Lamp1, a lysosomal marker, with Pyk2-inh treatment, suggests an enhancement in proteolytic activity. In vivo, we generated an acute Alzheimer's disease (AD) model by infusing Aβ into the brains of Iba-1 EGFP transgenic (Tg) mice. The administration of the Pyk2-Inh led to an increased migration of microglia toward amyloid deposits in the brains of Iba-1 EGFP Tg mice, accompanied by morphological activation, suggesting a heightened affinity for Aβ. In human microglia, lipopolysaccharide (LPS)-induced inflammatory responses showed that inhibition of Pyk2 signaling significantly reduced the transcription and protein expression of pro-inflammatory markers. These results suggest that Pyk2 inhibition can modulate microglial functions, potentially reducing neuroinflammation and aiding in the clearance of neurodegenerative disease markers. This highlights Pyk2 as a promising target for therapeutic intervention in neurodegenerative diseases.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301859/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03192-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Multinucleated microglia have been observed in contexts associated with infection, inflammation, and aging. Though commonly linked to pathological conditions, the larger cell size of multinucleated microglia might enhance their phagocytic functions, potentially aiding in the clearance of brain debris and suggesting a reassessment of their pathological significance. To assess the phagocytic capacity of multinucleated microglia and its implications for brain debris clearance, we induced their formation by inhibiting Pyk2 activity using the pharmacological inhibitor PF-431396, which triggers cytokinesis regression. Multinucleated microglia demonstrate enhanced phagocytic function, as evidenced by their increased capacity to engulf β-amyloid (Aβ) oligomers. Concurrently, the phosphorylation of Pyk2, induced by Aβ peptide, was diminished upon treatment with a Pyk2 inhibitor (Pyk2-Inh, PF-431396). Furthermore, the increased expression of Lamp1, a lysosomal marker, with Pyk2-inh treatment, suggests an enhancement in proteolytic activity. In vivo, we generated an acute Alzheimer's disease (AD) model by infusing Aβ into the brains of Iba-1 EGFP transgenic (Tg) mice. The administration of the Pyk2-Inh led to an increased migration of microglia toward amyloid deposits in the brains of Iba-1 EGFP Tg mice, accompanied by morphological activation, suggesting a heightened affinity for Aβ. In human microglia, lipopolysaccharide (LPS)-induced inflammatory responses showed that inhibition of Pyk2 signaling significantly reduced the transcription and protein expression of pro-inflammatory markers. These results suggest that Pyk2 inhibition can modulate microglial functions, potentially reducing neuroinflammation and aiding in the clearance of neurodegenerative disease markers. This highlights Pyk2 as a promising target for therapeutic intervention in neurodegenerative diseases.

在急性β淀粉样蛋白输注模型中通过抑制Pyk2增强与多核小胶质细胞相关的吞噬能力
多核小胶质细胞在感染、炎症和衰老等情况下均可观察到。虽然多核小胶质细胞通常与病理情况有关,但其较大的细胞体积可能会增强其吞噬功能,从而有可能帮助清除脑碎片,并建议重新评估其病理意义。为了评估多核小胶质细胞的吞噬能力及其对清除脑碎片的影响,我们使用药理抑制剂PF-431396抑制Pyk2的活性,诱导多核小胶质细胞的形成。多核小胶质细胞吞噬β淀粉样蛋白(Aβ)寡聚体的能力增强,证明其吞噬功能增强。与此同时,Pyk2抑制剂(Pyk2-Inh,PF-431396)可减少Aβ肽诱导的Pyk2磷酸化。此外,Pyk2-inh 处理后溶酶体标志物 Lamp1 的表达增加,表明蛋白水解活性增强。在体内,我们通过将 Aβ 注入 Iba-1 EGFP 转基因(Tg)小鼠的大脑,建立了急性阿尔茨海默病(AD)模型。注射Pyk2-Inh后,小胶质细胞向Iba-1 EGFP转基因小鼠大脑中的淀粉样蛋白沉积迁移增加,并伴有形态活化,这表明小胶质细胞对Aβ的亲和力增强。在人类小胶质细胞中,脂多糖(LPS)诱导的炎症反应显示,抑制 Pyk2 信号传导可显著减少促炎症标志物的转录和蛋白表达。这些结果表明,抑制 Pyk2 可以调节小胶质细胞的功能,从而有可能减轻神经炎症并帮助清除神经退行性疾病标志物。这凸显了 Pyk2 是治疗干预神经退行性疾病的一个有前景的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信