Tracking copper nanofiller evolution in polysiloxane during processing into SiOC ceramic.

IF 6.1 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology
Journal of Applied Crystallography Pub Date : 2024-06-18 eCollection Date: 2024-08-01 DOI:10.1107/S1600576724003133
Patricia A Loughney, Paul Cuillier, Timothy L Pruyn, Vicky Doan-Nguyen
{"title":"Tracking copper nanofiller evolution in polysiloxane during processing into SiOC ceramic.","authors":"Patricia A Loughney, Paul Cuillier, Timothy L Pruyn, Vicky Doan-Nguyen","doi":"10.1107/S1600576724003133","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer-derived ceramics (PDCs) remain at the forefront of research for a variety of applications including ultra-high-temperature ceramics, energy storage and functional coatings. Despite their wide use, questions remain about the complex structural transition from polymer to ceramic and how local structure influences the final microstructure and resulting properties. This is further complicated when nanofillers are introduced to tailor structural and functional properties, as nanoparticle surfaces can interact with the matrix and influence the resulting structure. The inclusion of crystalline nanofiller produces a mixed crystalline-amorphous composite, which poses characterization challenges. With this study, we aim to address these challenges with a local-scale structural study that probes changes in a polysiloxane matrix with incorporated copper nanofiller. Composites were processed at three unique temperatures to capture mixing, pyrolysis and initial crystallization stages for the pre-ceramic polymer. We observed the evolution of the nanofiller with electron microscopy and applied synchrotron X-ray diffraction with differential pair distribution function (d-PDF) analysis to monitor changes in the matrix's local structure and interactions with the nanofiller. The application of the d-PDF to PDC materials is novel and informs future studies to understand interfacial interactions between nanofiller and matrix throughout PDC processing.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"57 Pt 4","pages":"945-954"},"PeriodicalIF":6.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724003133","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer-derived ceramics (PDCs) remain at the forefront of research for a variety of applications including ultra-high-temperature ceramics, energy storage and functional coatings. Despite their wide use, questions remain about the complex structural transition from polymer to ceramic and how local structure influences the final microstructure and resulting properties. This is further complicated when nanofillers are introduced to tailor structural and functional properties, as nanoparticle surfaces can interact with the matrix and influence the resulting structure. The inclusion of crystalline nanofiller produces a mixed crystalline-amorphous composite, which poses characterization challenges. With this study, we aim to address these challenges with a local-scale structural study that probes changes in a polysiloxane matrix with incorporated copper nanofiller. Composites were processed at three unique temperatures to capture mixing, pyrolysis and initial crystallization stages for the pre-ceramic polymer. We observed the evolution of the nanofiller with electron microscopy and applied synchrotron X-ray diffraction with differential pair distribution function (d-PDF) analysis to monitor changes in the matrix's local structure and interactions with the nanofiller. The application of the d-PDF to PDC materials is novel and informs future studies to understand interfacial interactions between nanofiller and matrix throughout PDC processing.

在将聚硅氧烷加工成 SiOC 陶瓷的过程中,跟踪纳米铜填料在聚硅氧烷中的演变。
聚合物衍生陶瓷(PDCs)在超高温陶瓷、能量存储和功能涂层等多种应用领域的研究仍处于前沿。尽管其用途广泛,但从聚合物到陶瓷的复杂结构转变,以及局部结构如何影响最终微观结构和由此产生的性能等问题依然存在。当引入纳米填料来定制结构和功能特性时,这一问题会变得更加复杂,因为纳米粒子表面会与基体相互作用并影响最终结构。晶体纳米填料的加入会产生晶体-非晶态混合复合材料,这给表征带来了挑战。本研究旨在通过局部尺度的结构研究来解决这些难题,该研究探究了含有纳米铜填料的聚硅氧烷基体的变化。复合材料在三种不同的温度下进行处理,以捕捉预陶瓷聚合物的混合、热解和初始结晶阶段。我们用电子显微镜观察了纳米填料的演变,并应用同步辐射 X 射线衍射和差分对分布函数(d-PDF)分析来监测基体局部结构的变化以及与纳米填料的相互作用。将 d-PDF 应用于 PDC 材料是一项创新,为今后的研究提供了信息,有助于了解在整个 PDC 加工过程中纳米填料与基体之间的界面相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信