{"title":"Effects of the S1P/S1PR1 Signaling Pathway on High Glucose-Induced NRK-52E Epithelial-Mesenchymal Transition Via Regulation of ROS/NLRP3.","authors":"Jihua Tian, Jingshu Chen, Qiuyue Sun, Taiping Huang, Huanyu Xu, Jing Wang, Zhijie Ma","doi":"10.1007/s10753-024-02118-y","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) is the most significant complication in diabetic patients, ultimately leading to renal fibrosis. The most important manifestation of DKD is the epithelial-mesenchymal transition (EMT) of renal tubular cells, which can lead to renal fibrosis and inflammatory injury in special situations. Sphingosine 1-phosphate (S1P) is involved in various signal transduction pathways and plays a role through G protein-coupled receptors. Research has demonstrated that blocking the S1P / S1PR2 pathway inhibits inflammation and fibrosis. However, the interaction between S1P/S1PR1 and the pathophysiology of EMT remains ambiguous. The purpose of this study was to investigate the mechanism of S1P/S1PR1 on high glucose (HG)-induced renal EMT. We found that HG markedly increased the S1P and EMT marker levels in renal tubular epithelial cells. At the same time, HG could stimulate NF-κB/ROS/NLRP3 expression, but these phenomena were reversed after blocking S1PR1. In mice models of DKD, FTY720 (S1P antagonist) could significantly improve renal function and reduce the infiltration of inflammatory cells. ROS, as well as NLPR3 inflammasome, were markedly decreased in the treatment group. FTY720 inhibits extracellular matrix synthesis and improves renal fibrosis. In brief, the HG stimulates S1P/S1PR1 synthesis and activates the S1P/S1PR1 pathway. Through the S1P/S1PR1 pathway, activates NF-κB, promotes ROS generation and NLRP3 inflammasome activation, and ultimately causes EMT.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02118-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic kidney disease (DKD) is the most significant complication in diabetic patients, ultimately leading to renal fibrosis. The most important manifestation of DKD is the epithelial-mesenchymal transition (EMT) of renal tubular cells, which can lead to renal fibrosis and inflammatory injury in special situations. Sphingosine 1-phosphate (S1P) is involved in various signal transduction pathways and plays a role through G protein-coupled receptors. Research has demonstrated that blocking the S1P / S1PR2 pathway inhibits inflammation and fibrosis. However, the interaction between S1P/S1PR1 and the pathophysiology of EMT remains ambiguous. The purpose of this study was to investigate the mechanism of S1P/S1PR1 on high glucose (HG)-induced renal EMT. We found that HG markedly increased the S1P and EMT marker levels in renal tubular epithelial cells. At the same time, HG could stimulate NF-κB/ROS/NLRP3 expression, but these phenomena were reversed after blocking S1PR1. In mice models of DKD, FTY720 (S1P antagonist) could significantly improve renal function and reduce the infiltration of inflammatory cells. ROS, as well as NLPR3 inflammasome, were markedly decreased in the treatment group. FTY720 inhibits extracellular matrix synthesis and improves renal fibrosis. In brief, the HG stimulates S1P/S1PR1 synthesis and activates the S1P/S1PR1 pathway. Through the S1P/S1PR1 pathway, activates NF-κB, promotes ROS generation and NLRP3 inflammasome activation, and ultimately causes EMT.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.