Jose A Arevalo, Robert G Leija, Adam D Osmond, Casey C Curl, Justin J Duong, Melvin J Huie, Umesh Masharani, George A Brooks
{"title":"Delayed and diminished postprandial lactate shuttling in healthy older men and women.","authors":"Jose A Arevalo, Robert G Leija, Adam D Osmond, Casey C Curl, Justin J Duong, Melvin J Huie, Umesh Masharani, George A Brooks","doi":"10.1152/ajpendo.00183.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Lactate, a product of glycolysis, is formed under aerobic conditions. Extensive work has shown lactate flux in young and exercising humans; however, the effect of age is not known. We tested the hypothesis that postprandial lactate shuttling (PLS) would be diminished in older adults. We used [3-<sup>13</sup>C]lactate and [6,6-<sup>2</sup>H]glucose tracers, an oral glucose tolerance test (OGTT), and arterialized blood sampling to determine postprandial lactate rates of appearance (Ra), disappearance (Rd), and oxidation (Rox) in 15 young (28.1 ± 1.4 yr) and 13 older (70.6 ± 2.4 yr) healthy men and women. In young participants, fasting blood [lactate] (≈0.5 mM) rose after the glucose challenge, peaked at 15 min, dipped to a nadir at 30 min, and rose again peaking at 60 min (≈1.0 mM). Initial responses in lactate Ra of older participants were delayed and diminished until 90 min rising by 0.83 mg·kg<sup>-1</sup>·min<sup>-1</sup>. Lactate Rox was higher throughout the entire trial in young participants by a difference of ∼0.5 mg·kg<sup>-1</sup>·min<sup>-1</sup>. Initial peaks in lactate Ra and concentration in all volunteers demonstrated the presence of an enteric PLS following an OGTT. Notably, in the systemic, but not enteric, PLS phase, lactate Ra correlated highly with glucose Rd (<i>r</i><sup>2</sup> = 0.92). Correspondence of second peaks in lactate Ra and concentration and glucose Rd shows dependence of lactate Ra on glucose Rd. Although results show both enteric and systemic PLS phases in young and older study cohorts, metabolic responses were delayed and diminished in healthy older individuals.<b>NEW & NOTEWORTHY</b> We used isotope tracers, an oral glucose tolerance test, and arterialized blood sampling to determine postprandial lactate flux rates in healthy young and older men and women. Lactate rates of appearance and oxidation and the lactate-pyruvate exchange were delayed and diminished in both enteric and systemic postprandial lactate shuttle phases in older participants.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482286/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00183.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Lactate, a product of glycolysis, is formed under aerobic conditions. Extensive work has shown lactate flux in young and exercising humans; however, the effect of age is not known. We tested the hypothesis that postprandial lactate shuttling (PLS) would be diminished in older adults. We used [3-13C]lactate and [6,6-2H]glucose tracers, an oral glucose tolerance test (OGTT), and arterialized blood sampling to determine postprandial lactate rates of appearance (Ra), disappearance (Rd), and oxidation (Rox) in 15 young (28.1 ± 1.4 yr) and 13 older (70.6 ± 2.4 yr) healthy men and women. In young participants, fasting blood [lactate] (≈0.5 mM) rose after the glucose challenge, peaked at 15 min, dipped to a nadir at 30 min, and rose again peaking at 60 min (≈1.0 mM). Initial responses in lactate Ra of older participants were delayed and diminished until 90 min rising by 0.83 mg·kg-1·min-1. Lactate Rox was higher throughout the entire trial in young participants by a difference of ∼0.5 mg·kg-1·min-1. Initial peaks in lactate Ra and concentration in all volunteers demonstrated the presence of an enteric PLS following an OGTT. Notably, in the systemic, but not enteric, PLS phase, lactate Ra correlated highly with glucose Rd (r2 = 0.92). Correspondence of second peaks in lactate Ra and concentration and glucose Rd shows dependence of lactate Ra on glucose Rd. Although results show both enteric and systemic PLS phases in young and older study cohorts, metabolic responses were delayed and diminished in healthy older individuals.NEW & NOTEWORTHY We used isotope tracers, an oral glucose tolerance test, and arterialized blood sampling to determine postprandial lactate flux rates in healthy young and older men and women. Lactate rates of appearance and oxidation and the lactate-pyruvate exchange were delayed and diminished in both enteric and systemic postprandial lactate shuttle phases in older participants.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.