Chaoning Lin, Xiaohu Du, Siyu Chen, Tongchun Li, Xinbo Zhou, P. H. A. J. M. van Gelder
{"title":"On the multi-parameters identification of concrete dams: A novel stochastic inverse approach","authors":"Chaoning Lin, Xiaohu Du, Siyu Chen, Tongchun Li, Xinbo Zhou, P. H. A. J. M. van Gelder","doi":"10.1002/nag.3812","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a novel stochastic inverse method that utilizes perturbation theory and advanced intelligence techniques to solve the multi-parameter identification problem of concrete dams using displacement field monitoring data. The proposed method considers the uncertainties associated with the dam displacement monitoring data, which are comprised of two distinct sources: the first is related to stochastic mechanical properties of the dam, and the second is due to observation errors. The displacements at different measuring points generated by dam mechanical properties exhibit spatial correlation, while the observation errors at different points can be considered statistically random. In this context, the inversion formulas are derived for unknown stochastic parameters of the dam by combining perturbation equations and Taylor expansion methods. An improved meta-heuristic optimization method is employed to identify the mean of stochastic parameters, while mathematical and statistical methods are used to determine the variance of stochastic parameters. The feasibility of the proposed method is verified through numerical examples of a typical dam section under different conditions. Additionally, the paper discusses and demonstrates the applicability of this method in a practical dam project. Results indicate that this method can effectively capture the uncertainty of dam's mechanical properties and separates them from observation errors.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3812","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel stochastic inverse method that utilizes perturbation theory and advanced intelligence techniques to solve the multi-parameter identification problem of concrete dams using displacement field monitoring data. The proposed method considers the uncertainties associated with the dam displacement monitoring data, which are comprised of two distinct sources: the first is related to stochastic mechanical properties of the dam, and the second is due to observation errors. The displacements at different measuring points generated by dam mechanical properties exhibit spatial correlation, while the observation errors at different points can be considered statistically random. In this context, the inversion formulas are derived for unknown stochastic parameters of the dam by combining perturbation equations and Taylor expansion methods. An improved meta-heuristic optimization method is employed to identify the mean of stochastic parameters, while mathematical and statistical methods are used to determine the variance of stochastic parameters. The feasibility of the proposed method is verified through numerical examples of a typical dam section under different conditions. Additionally, the paper discusses and demonstrates the applicability of this method in a practical dam project. Results indicate that this method can effectively capture the uncertainty of dam's mechanical properties and separates them from observation errors.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.