Polynomial and Rational Measure Modifications of Orthogonal Polynomials via Infinite-Dimensional Banded Matrix Factorizations

IF 2.5 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Timon S. Gutleb, Sheehan Olver, Richard Mikaël Slevinsky
{"title":"Polynomial and Rational Measure Modifications of Orthogonal Polynomials via Infinite-Dimensional Banded Matrix Factorizations","authors":"Timon S. Gutleb, Sheehan Olver, Richard Mikaël Slevinsky","doi":"10.1007/s10208-024-09671-w","DOIUrl":null,"url":null,"abstract":"<p>We describe fast algorithms for approximating the connection coefficients between a family of orthogonal polynomials and another family with a polynomially or rationally modified measure. The connection coefficients are computed via infinite-dimensional banded matrix factorizations and may be used to compute the modified Jacobi matrices all in linear complexity with respect to the truncation degree. A family of orthogonal polynomials with modified classical weights is constructed that support banded differentiation matrices, enabling sparse spectral methods with modified classical orthogonal polynomials. We present several applications and numerical experiments using an open source implementation which make direct use of these results.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"23 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09671-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We describe fast algorithms for approximating the connection coefficients between a family of orthogonal polynomials and another family with a polynomially or rationally modified measure. The connection coefficients are computed via infinite-dimensional banded matrix factorizations and may be used to compute the modified Jacobi matrices all in linear complexity with respect to the truncation degree. A family of orthogonal polynomials with modified classical weights is constructed that support banded differentiation matrices, enabling sparse spectral methods with modified classical orthogonal polynomials. We present several applications and numerical experiments using an open source implementation which make direct use of these results.

Abstract Image

通过无限维带状矩阵因式分解对正交多项式进行多项式和有理测度修正
我们描述了近似正交多项式族与另一个具有多项式或合理修正度量的族之间的连接系数的快速算法。连接系数通过无穷维带状矩阵因式分解计算,并可用于计算修正雅可比矩阵,其复杂度与截断度呈线性关系。我们构建了一个具有修正经典权重的正交多项式族,它支持带状微分矩阵,从而实现了使用修正经典正交多项式的稀疏谱方法。我们介绍了直接利用这些结果的几个应用和使用开源实现的数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信