Step Length Estimation for Blind Walkers.

Fatemeh Elyasi, Roberto Manduchi
{"title":"Step Length Estimation for Blind Walkers.","authors":"Fatemeh Elyasi, Roberto Manduchi","doi":"10.1007/978-3-031-62846-7_48","DOIUrl":null,"url":null,"abstract":"<p><p>Wayfinding systems using inertial data recorded from a smartphone carried by the walker have great potential for increasing mobility independence of blind pedestrians. Pedestrian dead-reckoning (PDR) algorithms for localization require estimation of the step length of the walker. Prior work has shown that step length can be reliably predicted by processing the inertial data recorded by the smartphone with a simple machine learning algorithm. However, this prior work only considered sighted walkers, whose gait may be different from that of blind walkers using a long cane or a dog guide. In this work, we show that a step length estimation network trained on data from sighted walkers performs poorly when tested on blind walkers, and that retraining with data from blind walkers can dramatically increase the accuracy of step length prediction.</p>","PeriodicalId":90476,"journal":{"name":"Computers helping people with special needs : ... International Conference, ICCHP ... : proceedings. International Conference on Computers Helping People with Special Needs","volume":"14750 ","pages":"400-407"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298791/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers helping people with special needs : ... International Conference, ICCHP ... : proceedings. International Conference on Computers Helping People with Special Needs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-62846-7_48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wayfinding systems using inertial data recorded from a smartphone carried by the walker have great potential for increasing mobility independence of blind pedestrians. Pedestrian dead-reckoning (PDR) algorithms for localization require estimation of the step length of the walker. Prior work has shown that step length can be reliably predicted by processing the inertial data recorded by the smartphone with a simple machine learning algorithm. However, this prior work only considered sighted walkers, whose gait may be different from that of blind walkers using a long cane or a dog guide. In this work, we show that a step length estimation network trained on data from sighted walkers performs poorly when tested on blind walkers, and that retraining with data from blind walkers can dramatically increase the accuracy of step length prediction.

盲人步行者的步长估计
使用步行者随身携带的智能手机记录的惯性数据的寻路系统在提高盲人步行者的行动独立性方面具有巨大潜力。用于定位的行人死区重定位(PDR)算法需要估算步行者的步长。先前的研究表明,通过使用简单的机器学习算法处理智能手机记录的惯性数据,可以可靠地预测步长。然而,之前的工作只考虑了视力正常的步行者,他们的步态可能与使用长手杖或导盲犬的盲人步行者不同。在这项工作中,我们证明了根据健视步行者的数据训练的步长估计网络在盲人步行者身上测试时表现不佳,而使用盲人步行者的数据重新训练可以显著提高步长预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信