STRIDE: Street View-based Environmental Feature Detection and Pedestrian Collision Prediction.

Cristina González, Nicolás Ayobi, Felipe Escallón, Laura Baldovino-Chiquillo, Maria Wilches-Mogollón, Donny Pasos, Nicole Ramírez, Jose Pinzón, Olga Sarmiento, D Alex Quistberg, Pablo Arbeláez
{"title":"STRIDE: Street View-based Environmental Feature Detection and Pedestrian Collision Prediction.","authors":"Cristina González, Nicolás Ayobi, Felipe Escallón, Laura Baldovino-Chiquillo, Maria Wilches-Mogollón, Donny Pasos, Nicole Ramírez, Jose Pinzón, Olga Sarmiento, D Alex Quistberg, Pablo Arbeláez","doi":"10.1109/iccvw60793.2023.00347","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a novel benchmark to study the impact and relationship of built environment elements on pedestrian collision prediction, intending to enhance environmental awareness in autonomous driving systems to prevent pedestrian injuries actively. We introduce a built environment detection task in large-scale panoramic images and a detection-based pedestrian collision frequency prediction task. We propose a baseline method that incorporates a collision prediction module into a state-of-the-art detection model to tackle both tasks simultaneously. Our experiments demonstrate a significant correlation between object detection of built environment elements and pedestrian collision frequency prediction. Our results are a stepping stone towards understanding the interdependencies between built environment conditions and pedestrian safety.</p>","PeriodicalId":72022,"journal":{"name":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","volume":"2023 ","pages":"3222-3234"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298792/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccvw60793.2023.00347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel benchmark to study the impact and relationship of built environment elements on pedestrian collision prediction, intending to enhance environmental awareness in autonomous driving systems to prevent pedestrian injuries actively. We introduce a built environment detection task in large-scale panoramic images and a detection-based pedestrian collision frequency prediction task. We propose a baseline method that incorporates a collision prediction module into a state-of-the-art detection model to tackle both tasks simultaneously. Our experiments demonstrate a significant correlation between object detection of built environment elements and pedestrian collision frequency prediction. Our results are a stepping stone towards understanding the interdependencies between built environment conditions and pedestrian safety.

STRIDE:基于街景的环境特征检测和行人碰撞预测。
本文介绍了一种研究建筑环境要素对行人碰撞预测的影响和关系的新基准,旨在增强自动驾驶系统的环境意识,积极预防行人伤害。我们介绍了大规模全景图像中的建筑环境检测任务和基于检测的行人碰撞频率预测任务。我们提出了一种基线方法,在最先进的检测模型中加入碰撞预测模块,以同时处理这两项任务。我们的实验证明,建筑环境元素的目标检测与行人碰撞频率预测之间存在明显的相关性。我们的研究结果为理解建筑环境条件与行人安全之间的相互依存关系奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信