Nrf1 Reduces COX-2 Expression and Maintains Cellular Homeostasis After Cerebral Ischemia/Reperfusion By Targeting IL-6/TNF-α Protein Production.

IF 6.2
Jing Yang, Junqing Yang, Ying Luo, Dongzhi Ran, Rongsong Xia, Qixue Zheng, Peishuang Yao, Hong Wang
{"title":"Nrf1 Reduces COX-2 Expression and Maintains Cellular Homeostasis After Cerebral Ischemia/Reperfusion By Targeting IL-6/TNF-α Protein Production.","authors":"Jing Yang, Junqing Yang, Ying Luo, Dongzhi Ran, Rongsong Xia, Qixue Zheng, Peishuang Yao, Hong Wang","doi":"10.1007/s11481-024-10136-8","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation has been considered involved in the process of cerebral ischemia-reperfusion injury (CIRI). Transcription factors play a crucial role in regulating gene transcription and the expressions of specific proteins during the progression of various neurological diseases. Evidence showed that transcription factor nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as Nrf1) possessed strong biological activities including antioxidant, anti-inflammatory and neuroprotective properties. However, its role and potential molecular mechanisms in CIRI remain unclear. In our study, we observed a significant elevation of Nrf1 in the cerebral cortex following cerebral ischemia-reperfusion in rats. The Nrf1 downregulation markedly raised COX-2, TNF-α, IL-1β, and IL-6 protein levels during middle cerebral artery occlusion/reperfusion in rats, which led to worsened neurological deficits, higher cerebral infarct volume, and intensified cortical histopathological damage. In subsequent in vitro studies, the expression of Nrf1 protein increased following oxygen-glucose deprivation/reperfusion treatment on neurons. Subsequently, Nrf1 knockdown resulted in a significant upregulation of inflammatory factors, leading to a substantial increase in the cell death rate. Through analyzing the alterations in the expression of inflammatory factors under diverse interventions, it is indicated that Nrf1 possesses the capacity to discern variations in inflammatory factors via specific structural domains. Our findings demonstrate the translocation of the Nrf1 protein from the cytoplasm to the nucleus, thereby modulating the protein expression of IL-6/TNF-α and subsequently reducing the expression of multiple inflammatory factors. This study signifies, for the first time, that during cerebral ischemia-reperfusion, Nrf1 translocases to the nucleus to regulate the protein expression of IL-6/TNF-α, consequently suppressing COX-2 expression and governing cellular inflammation, ultimately upholding cellular homeostasis.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"19 1","pages":"41"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-024-10136-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuroinflammation has been considered involved in the process of cerebral ischemia-reperfusion injury (CIRI). Transcription factors play a crucial role in regulating gene transcription and the expressions of specific proteins during the progression of various neurological diseases. Evidence showed that transcription factor nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as Nrf1) possessed strong biological activities including antioxidant, anti-inflammatory and neuroprotective properties. However, its role and potential molecular mechanisms in CIRI remain unclear. In our study, we observed a significant elevation of Nrf1 in the cerebral cortex following cerebral ischemia-reperfusion in rats. The Nrf1 downregulation markedly raised COX-2, TNF-α, IL-1β, and IL-6 protein levels during middle cerebral artery occlusion/reperfusion in rats, which led to worsened neurological deficits, higher cerebral infarct volume, and intensified cortical histopathological damage. In subsequent in vitro studies, the expression of Nrf1 protein increased following oxygen-glucose deprivation/reperfusion treatment on neurons. Subsequently, Nrf1 knockdown resulted in a significant upregulation of inflammatory factors, leading to a substantial increase in the cell death rate. Through analyzing the alterations in the expression of inflammatory factors under diverse interventions, it is indicated that Nrf1 possesses the capacity to discern variations in inflammatory factors via specific structural domains. Our findings demonstrate the translocation of the Nrf1 protein from the cytoplasm to the nucleus, thereby modulating the protein expression of IL-6/TNF-α and subsequently reducing the expression of multiple inflammatory factors. This study signifies, for the first time, that during cerebral ischemia-reperfusion, Nrf1 translocases to the nucleus to regulate the protein expression of IL-6/TNF-α, consequently suppressing COX-2 expression and governing cellular inflammation, ultimately upholding cellular homeostasis.

Abstract Image

Nrf1 通过靶向 IL-6/TNF-α 蛋白的产生减少 COX-2 的表达并维持脑缺血再灌注后的细胞平衡
神经炎症被认为与脑缺血再灌注损伤(CIRI)过程有关。转录因子在各种神经系统疾病的进展过程中对基因转录和特定蛋白质的表达起着至关重要的调控作用。有证据表明,转录因子核因子红细胞 2 相关因子 1(NFE2L1,又称 Nrf1)具有很强的生物活性,包括抗氧化、抗炎和神经保护特性。然而,它在 CIRI 中的作用和潜在的分子机制仍不清楚。在我们的研究中,我们观察到大鼠脑缺血再灌注后大脑皮层中的 Nrf1 显著升高。在大鼠大脑中动脉闭塞/再灌注过程中,Nrf1的下调明显提高了COX-2、TNF-α、IL-1β和IL-6蛋白水平,导致神经功能缺损加重、脑梗塞体积增大和皮质组织病理学损伤加剧。在随后的体外研究中,神经元在缺氧-葡萄糖/再灌注处理后,Nrf1 蛋白的表达增加。随后,敲除 Nrf1 会导致炎症因子显著上调,从而导致细胞死亡率大幅上升。通过分析不同干预措施下炎症因子表达的变化,表明 Nrf1 有能力通过特定的结构域分辨炎症因子的变化。我们的研究结果表明,Nrf1 蛋白可从细胞质转位到细胞核,从而调节 IL-6/TNF-α 蛋白的表达,进而降低多种炎症因子的表达。这项研究首次表明,在脑缺血再灌注过程中,Nrf1转位到细胞核,调节IL-6/TNF-α的蛋白表达,从而抑制COX-2的表达,控制细胞炎症,最终维持细胞的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信