{"title":"The plastome and phylogenetic status of <i>Cotoneaster rosiflorus</i> (Rosaceae).","authors":"Kaikai Meng, Qiang Fan, Min Lin, Shouhui Huang","doi":"10.1080/23802359.2024.2385616","DOIUrl":null,"url":null,"abstract":"<p><p>Endemic to Taiwan Province, China, <i>Cotoneaster rosiflorus</i> Kun-Cheng Chang & Fu-Yuan Lu 2011 (Rosaceae) holds significant ecological and ornamental importance. Despite its value, research on its molecular data and phylogenetic position has remained limited. In this study, we addressed this gap by sequencing the genome-skimming data, assembling its plastome, and investigating its phylogenetic position. The plastome, spanning 159,449 bp in length, consisted of a large single-copy (87,433 bp), a small single-copy (19,262 bp), and two inverted repeat regions (26,377 bp). We annotated a total of 128 functional genes, including 84 protein-coding genes, 36 transfer genes, and eight ribosomal RNA genes. The phylogenetic results indicated that <i>C. rosiflorus</i> is closely related to <i>C. dammerii</i>, suggesting that <i>C. rosiflorus</i> might have captured its chloroplast from <i>C. dammerii</i> through hybridization and introgression events. This study offered valuable insights for forthcoming phylogenetic and population genetic investigations of <i>Cotoneaster</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299456/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/23802359.2024.2385616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Endemic to Taiwan Province, China, Cotoneaster rosiflorus Kun-Cheng Chang & Fu-Yuan Lu 2011 (Rosaceae) holds significant ecological and ornamental importance. Despite its value, research on its molecular data and phylogenetic position has remained limited. In this study, we addressed this gap by sequencing the genome-skimming data, assembling its plastome, and investigating its phylogenetic position. The plastome, spanning 159,449 bp in length, consisted of a large single-copy (87,433 bp), a small single-copy (19,262 bp), and two inverted repeat regions (26,377 bp). We annotated a total of 128 functional genes, including 84 protein-coding genes, 36 transfer genes, and eight ribosomal RNA genes. The phylogenetic results indicated that C. rosiflorus is closely related to C. dammerii, suggesting that C. rosiflorus might have captured its chloroplast from C. dammerii through hybridization and introgression events. This study offered valuable insights for forthcoming phylogenetic and population genetic investigations of Cotoneaster.