Slack K+ channels confer protection against myocardial ischaemia/reperfusion injury.

IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Anna Roslan, Katharina Paulus, Jiaqi Yang, Lucas Matt, Helmut Bischof, Natalie Längst, Sophia Schanz, Annika Luczak, Melanie Cruz Santos, Sandra Burgstaller, David Skrabak, Nadja I Bork, Roland Malli, Achim Schmidtko, Meinrad Gawaz, Viacheslav O Nikolaev, Peter Ruth, Rebekka Ehinger, Robert Lukowski
{"title":"Slack K+ channels confer protection against myocardial ischaemia/reperfusion injury.","authors":"Anna Roslan, Katharina Paulus, Jiaqi Yang, Lucas Matt, Helmut Bischof, Natalie Längst, Sophia Schanz, Annika Luczak, Melanie Cruz Santos, Sandra Burgstaller, David Skrabak, Nadja I Bork, Roland Malli, Achim Schmidtko, Meinrad Gawaz, Viacheslav O Nikolaev, Peter Ruth, Rebekka Ehinger, Robert Lukowski","doi":"10.1093/cvr/cvae155","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Na+-activated Slack potassium (K+) channels are increasingly recognized as regulators of neuronal activity, yet little is known about their role in the cardiovascular system. Slack activity increases when intracellular Na+ concentration ([Na+]i) reaches pathophysiological levels. Elevated [Na+]i is a major determinant of the ischaemia and reperfusion (I/R)-induced myocardial injury; thus, we hypothesized that Slack plays a role under these conditions.</p><p><strong>Methods and results: </strong>K+ currents in cardiomyocytes (CMs) obtained from wildtype but not from global Slack knockout mice were sensitive to electrical inactivation of voltage-sensitive Na+ channels. Live-cell imaging demonstrated that K+ fluxes across the sarcolemma rely on Slack, while the depolarized resting membrane potential in Slack-deficient CMs led to excessive cytosolic Ca2+ accumulation and finally to hypoxia/reoxygenation-induced cell death. Cardiac damage in an in vivo model of I/R was exacerbated in global and CM-specific conditional Slack mutants and largely insensitive to mechanical conditioning manoeuvres. Finally, the protection conferred by mitochondrial ATP-sensitive K+ (mitoKATP) channels required functional Slack in CMs.</p><p><strong>Conclusion: </strong>Collectively, our study provides evidence for Slack's crucial involvement in the ion homeostasis of no or low O2-stressed CMs. Thereby, Slack activity opposes the I/R-induced fatal Ca2+-uptake to CMs supporting the cardioprotective signaling attributed to mitoKATP function.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":"174-189"},"PeriodicalIF":10.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvae155","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Na+-activated Slack potassium (K+) channels are increasingly recognized as regulators of neuronal activity, yet little is known about their role in the cardiovascular system. Slack activity increases when intracellular Na+ concentration ([Na+]i) reaches pathophysiological levels. Elevated [Na+]i is a major determinant of the ischaemia and reperfusion (I/R)-induced myocardial injury; thus, we hypothesized that Slack plays a role under these conditions.

Methods and results: K+ currents in cardiomyocytes (CMs) obtained from wildtype but not from global Slack knockout mice were sensitive to electrical inactivation of voltage-sensitive Na+ channels. Live-cell imaging demonstrated that K+ fluxes across the sarcolemma rely on Slack, while the depolarized resting membrane potential in Slack-deficient CMs led to excessive cytosolic Ca2+ accumulation and finally to hypoxia/reoxygenation-induced cell death. Cardiac damage in an in vivo model of I/R was exacerbated in global and CM-specific conditional Slack mutants and largely insensitive to mechanical conditioning manoeuvres. Finally, the protection conferred by mitochondrial ATP-sensitive K+ (mitoKATP) channels required functional Slack in CMs.

Conclusion: Collectively, our study provides evidence for Slack's crucial involvement in the ion homeostasis of no or low O2-stressed CMs. Thereby, Slack activity opposes the I/R-induced fatal Ca2+-uptake to CMs supporting the cardioprotective signaling attributed to mitoKATP function.

松弛的 K+ 通道对心肌缺血/再灌注损伤具有保护作用。
目的:越来越多的人认识到 Na+ 激活的 Slack 钾(K+)通道是神经元活动的调节器,但对它们在心血管系统中的作用却知之甚少。当细胞内 Na+ 浓度([Na+]i)达到病理生理水平时,弛缓活性就会增加。[Na+]i的升高是缺血和再灌注(I/R)诱导的心肌损伤的主要决定因素,因此我们假设斯拉克在这些条件下发挥了作用:野生型(WT)小鼠心肌细胞(CMs)中的 K+ 电流对电压敏感型 Na+ 通道的电失活敏感,但对全局性 Slack 基因敲除(KO)小鼠的 K+ 电流不敏感。活细胞成像显示,K+跨肌膜通量依赖于Slack,而Slack缺陷CM的静息膜电位去极化会导致细胞膜Ca2+过度积累,最终导致缺氧/复氧诱导的细胞死亡。在体内I/R模型中,整体和CM特异性条件性Slack突变体的心脏损伤加剧,而且对机械调节操作基本不敏感。最后,线粒体 ATP 依赖性 K+ 通道提供的保护需要 CM 中功能性 Slack:总之,我们的研究为Slack在无氧或低氧应激CM的离子平衡中的关键参与提供了证据。因此,Slack 的活性反对 I/R 诱导的 CM 致命的 Ca2+ 摄取,支持广泛归因于线粒体 KATP 功能的心脏保护信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Research
Cardiovascular Research 医学-心血管系统
CiteScore
21.50
自引率
3.70%
发文量
547
审稿时长
1 months
期刊介绍: Cardiovascular Research Journal Overview: International journal of the European Society of Cardiology Focuses on basic and translational research in cardiology and cardiovascular biology Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects Submission Criteria: Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels Accepts clinical proof-of-concept and translational studies Manuscripts expected to provide significant contribution to cardiovascular biology and diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信