Adiponectin suppresses stiffness-dependent, profibrotic activation of lung fibroblasts.

IF 3.6 2区 医学 Q1 PHYSIOLOGY
Julia Nemeth, Wioletta Skronska-Wasek, Sophie Keppler, Annika Schundner, Alexander Groß, Tanja Schoenberger, Karsten Quast, Karim C El Kasmi, Clemens Ruppert, Andreas Günther, Manfred Frick
{"title":"Adiponectin suppresses stiffness-dependent, profibrotic activation of lung fibroblasts.","authors":"Julia Nemeth, Wioletta Skronska-Wasek, Sophie Keppler, Annika Schundner, Alexander Groß, Tanja Schoenberger, Karsten Quast, Karim C El Kasmi, Clemens Ruppert, Andreas Günther, Manfred Frick","doi":"10.1152/ajplung.00037.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible respiratory disease with limited therapeutic options. A hallmark of IPF is excessive fibroblast activation and extracellular matrix (ECM) deposition. The resulting increase in tissue stiffness amplifies fibroblast activation and drives disease progression. Dampening stiffness-dependent activation of fibroblasts could slow disease progression. We performed an unbiased, next-generation sequencing (NGS) screen to identify signaling pathways involved in stiffness-dependent lung fibroblast activation. Adipocytokine signaling was downregulated in primary lung fibroblasts (PFs) cultured on stiff matrices. Re-activating adipocytokine signaling with adiponectin suppressed stiffness-dependent activation of human PFs. Adiponectin signaling depended on CDH13 expression and p38 mitogen-activated protein kinase gamma (p38MAPKγ) activation. CDH13 expression and p38MAPKγ activation were strongly reduced in lungs from IPF donors. Our data suggest that adiponectin-signaling via CDH13 and p38MAPKγ activation suppresses profibrotic activation of fibroblasts in the lung. Targeting of the adiponectin signaling cascade may provide therapeutic benefits in IPF.<b>NEW & NOTEWORTHY</b> A hallmark of idiopathic pulmonary fibrosis (IPF) is excessive fibroblast activation and extracellular matrix (ECM) deposition. The resulting increase in tissue stiffness amplifies fibroblast activation and drives disease progression. Dampening stiffness-dependent activation of fibroblasts could slow disease progression. We found that activation of the adipocytokine signaling pathway halts and reverses stiffness-induced, profibrotic fibroblast activation. Specific targeting of this signaling cascade may therefore provide therapeutic benefits in IPF.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L487-L502"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00037.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible respiratory disease with limited therapeutic options. A hallmark of IPF is excessive fibroblast activation and extracellular matrix (ECM) deposition. The resulting increase in tissue stiffness amplifies fibroblast activation and drives disease progression. Dampening stiffness-dependent activation of fibroblasts could slow disease progression. We performed an unbiased, next-generation sequencing (NGS) screen to identify signaling pathways involved in stiffness-dependent lung fibroblast activation. Adipocytokine signaling was downregulated in primary lung fibroblasts (PFs) cultured on stiff matrices. Re-activating adipocytokine signaling with adiponectin suppressed stiffness-dependent activation of human PFs. Adiponectin signaling depended on CDH13 expression and p38 mitogen-activated protein kinase gamma (p38MAPKγ) activation. CDH13 expression and p38MAPKγ activation were strongly reduced in lungs from IPF donors. Our data suggest that adiponectin-signaling via CDH13 and p38MAPKγ activation suppresses profibrotic activation of fibroblasts in the lung. Targeting of the adiponectin signaling cascade may provide therapeutic benefits in IPF.NEW & NOTEWORTHY A hallmark of idiopathic pulmonary fibrosis (IPF) is excessive fibroblast activation and extracellular matrix (ECM) deposition. The resulting increase in tissue stiffness amplifies fibroblast activation and drives disease progression. Dampening stiffness-dependent activation of fibroblasts could slow disease progression. We found that activation of the adipocytokine signaling pathway halts and reverses stiffness-induced, profibrotic fibroblast activation. Specific targeting of this signaling cascade may therefore provide therapeutic benefits in IPF.

脂肪连接素能抑制肺成纤维细胞因僵化而产生的促纤维化活化。
特发性肺纤维化(IPF)是一种进行性、不可逆的呼吸系统疾病,治疗方法有限。IPF 的特征之一是成纤维细胞过度活化和细胞外基质(ECM)沉积。由此导致的组织僵硬度增加会扩大成纤维细胞的活化并推动疾病的发展。抑制成纤维细胞依赖于僵化的活化可减缓疾病的进展。我们进行了无偏见的新一代测序(NGS)筛选,以确定参与僵化依赖性肺成纤维细胞活化的信号通路。在僵硬基质上培养的原代肺成纤维细胞(PFs)中,脂肪细胞因子信号下调。用脂肪细胞因子重新激活脂肪细胞因子信号转导可抑制人类肺成纤维细胞的僵硬依赖性活化。脂肪细胞因子信号转导依赖于CDH13的表达和p38丝裂原活化蛋白激酶γ(p38MAPKγ)的激活。在 IPF 供体的肺中,CDH13 的表达和 p38MAPKγ 的活化均显著降低。我们的数据表明,通过 CDH13 和 p38MAPKγ 激活的脂肪连接素信号可抑制肺中成纤维细胞的促纤维化激活。靶向脂肪连接素信号级联可为 IPF 带来治疗益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信