Yuxiang Hong , Yuxuan Jiang , Mingxuan Yang , Baohua Chang , Dong DU
{"title":"Intelligent seam tracking in foils joining based on spatial–temporal deep learning from molten pool serial images","authors":"Yuxiang Hong , Yuxuan Jiang , Mingxuan Yang , Baohua Chang , Dong DU","doi":"10.1016/j.rcim.2024.102840","DOIUrl":null,"url":null,"abstract":"<div><p>Vision-based weld seam tracking has become one of the key technologies to realize intelligent robotic welding, and weld deviation detection is an essential step. However, accurate and robust detection of weld deviations during the microwelding of ultrathin metal foils remains a significant challenge. This challenge can be attributed to the fusion zone at the mesoscopic scale and the complex time-varying interference (pulsed arcs and reflected light from the workpiece surface). In this paper, an intelligent seam tracking approach for foils joining based on spatial–temporal deep learning from molten pool serial images is proposed. More specifically, a microscopic passive vision sensor is designed to capture molten pool and seam trajectory images under pulsed arc lights. A 3D convolutional neural network (3DCNN) and long short-term memory (LSTM)-based welding torch offset prediction network (WTOP-net) is established to implement highly accurate deviation prediction by capturing long-term dependence of spatial–temporal features. Then, expert knowledge is further incorporated into the spatio-temporal features to improve the robustness of the model. In addition, the slime mould algorithm (SMA) is used to prevent local optima and improve accuracy, efficiency of WTOP-net. The experimental results indicate that the maximum error detected by our method fluctuates within <span><math><mo>±</mo></math></span> 0.08 mm and the average error is within <span><math><mo>±</mo></math></span> 0.011 mm when joining two 0.12 mm thickness stainless steel diaphragms. The proposed approach provides a basis for automated robotic seam tracking and intelligent precision manufacturing of ultrathin sheets welded components in aerospace and other fields.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"91 ","pages":"Article 102840"},"PeriodicalIF":9.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524001273","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Vision-based weld seam tracking has become one of the key technologies to realize intelligent robotic welding, and weld deviation detection is an essential step. However, accurate and robust detection of weld deviations during the microwelding of ultrathin metal foils remains a significant challenge. This challenge can be attributed to the fusion zone at the mesoscopic scale and the complex time-varying interference (pulsed arcs and reflected light from the workpiece surface). In this paper, an intelligent seam tracking approach for foils joining based on spatial–temporal deep learning from molten pool serial images is proposed. More specifically, a microscopic passive vision sensor is designed to capture molten pool and seam trajectory images under pulsed arc lights. A 3D convolutional neural network (3DCNN) and long short-term memory (LSTM)-based welding torch offset prediction network (WTOP-net) is established to implement highly accurate deviation prediction by capturing long-term dependence of spatial–temporal features. Then, expert knowledge is further incorporated into the spatio-temporal features to improve the robustness of the model. In addition, the slime mould algorithm (SMA) is used to prevent local optima and improve accuracy, efficiency of WTOP-net. The experimental results indicate that the maximum error detected by our method fluctuates within 0.08 mm and the average error is within 0.011 mm when joining two 0.12 mm thickness stainless steel diaphragms. The proposed approach provides a basis for automated robotic seam tracking and intelligent precision manufacturing of ultrathin sheets welded components in aerospace and other fields.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.