{"title":"Advances in basic research on glucagon and alpha cells.","authors":"Yoshitaka Hayashi","doi":"10.1007/s13340-024-00696-8","DOIUrl":null,"url":null,"abstract":"<p><p>The regulation of plasma amino acid levels by glucagon in humans first attracted the attention of researchers in the 1980s. Recent basic research using animal models of glucagon deficiency suggested that a major physiological role of glucagon is the regulation of amino acid metabolism rather than to increase blood glucose levels. In this regard, novel feedback regulatory mechanisms that are mediated by glucagon and amino acids have recently been described between islet alpha cells and the liver. Increasingly, hyperglucagonemia in humans with diabetes and/or nonalcoholic fatty liver diseases is reported to likely be a compensatory response to hepatic glucagon resistance. Severe glucagon resistance due to a glucagon receptor mutation in humans causes hyperaminoacidemia and islet alpha cell expansion combined with pancreatic hypertrophy. Notably, a recent report showed that the restoration of glucagon resistance by liver transplantation resolved not only hyperglucagonemia, but also pancreatic hypertrophy and other metabolic disorders. The mechanisms that regulate islet cell proliferation by amino acids largely remain unelucidated. Clarification of such mechanisms will increase our understanding of the pathophysiology of diseases related to glucagon.</p>","PeriodicalId":11340,"journal":{"name":"Diabetology International","volume":"15 3","pages":"348-352"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetology International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13340-024-00696-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The regulation of plasma amino acid levels by glucagon in humans first attracted the attention of researchers in the 1980s. Recent basic research using animal models of glucagon deficiency suggested that a major physiological role of glucagon is the regulation of amino acid metabolism rather than to increase blood glucose levels. In this regard, novel feedback regulatory mechanisms that are mediated by glucagon and amino acids have recently been described between islet alpha cells and the liver. Increasingly, hyperglucagonemia in humans with diabetes and/or nonalcoholic fatty liver diseases is reported to likely be a compensatory response to hepatic glucagon resistance. Severe glucagon resistance due to a glucagon receptor mutation in humans causes hyperaminoacidemia and islet alpha cell expansion combined with pancreatic hypertrophy. Notably, a recent report showed that the restoration of glucagon resistance by liver transplantation resolved not only hyperglucagonemia, but also pancreatic hypertrophy and other metabolic disorders. The mechanisms that regulate islet cell proliferation by amino acids largely remain unelucidated. Clarification of such mechanisms will increase our understanding of the pathophysiology of diseases related to glucagon.
期刊介绍:
Diabetology International, the official journal of the Japan Diabetes Society, publishes original research articles about experimental research and clinical studies in diabetes and related areas. The journal also presents editorials, reviews, commentaries, reports of expert committees, and case reports on any aspect of diabetes. Diabetology International welcomes submissions from researchers, clinicians, and health professionals throughout the world who are interested in research, treatment, and care of patients with diabetes. All manuscripts are peer-reviewed to assure that high-quality information in the field of diabetes is made available to readers. Manuscripts are reviewed with due respect for the author''s confidentiality. At the same time, reviewers also have rights to confidentiality, which are respected by the editors. The journal follows a single-blind review procedure, where the reviewers are aware of the names and affiliations of the authors, but the reviewer reports provided to authors are anonymous. Single-blind peer review is the traditional model of peer review that many reviewers are comfortable with, and it facilitates a dispassionate critique of a manuscript.