{"title":"Robustness and evolvability: Revisited, redefined and applied","authors":"Nawwaf Kharma , Rémi Bédard-Couture","doi":"10.1016/j.biosystems.2024.105281","DOIUrl":null,"url":null,"abstract":"<div><p>Building on and extending existing definitions of robustness and evolvability, we propose and utilize new formal definitions, with matching measures, of robustness and evolvability of systems with genotypes and corresponding phenotypes. We explain and show how these measures are more general and more representative of the concepts they stand for, than the commonly used/referenced measures originally proposed by Wagner. Further, a versatile digital modeling approach (BNK) is proposed that is inspired by NK systems. However, unlike NK systems, BNK incorporates a genotype and a phenotype, in addition to fitness. We develop and apply an Evolutionary Algorithm to a BNK-modeled system to find different types of perfect oscillators. We then map the resulting oscillating systems to possible genetic circuit realizations. Continuing with the synthetic biology theme, we also investigate the effect of noise in DNA synthesis on the predicted functionality of a DNA-based biosensor (i.e., its robustness), and we carry out a theoretical assessment of the evolvability of different types of ribozymes, undergoing directed evolution.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0303264724001667/pdfft?md5=5304e31c02c8bbc9c1755c1c322cbb41&pid=1-s2.0-S0303264724001667-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Building on and extending existing definitions of robustness and evolvability, we propose and utilize new formal definitions, with matching measures, of robustness and evolvability of systems with genotypes and corresponding phenotypes. We explain and show how these measures are more general and more representative of the concepts they stand for, than the commonly used/referenced measures originally proposed by Wagner. Further, a versatile digital modeling approach (BNK) is proposed that is inspired by NK systems. However, unlike NK systems, BNK incorporates a genotype and a phenotype, in addition to fitness. We develop and apply an Evolutionary Algorithm to a BNK-modeled system to find different types of perfect oscillators. We then map the resulting oscillating systems to possible genetic circuit realizations. Continuing with the synthetic biology theme, we also investigate the effect of noise in DNA synthesis on the predicted functionality of a DNA-based biosensor (i.e., its robustness), and we carry out a theoretical assessment of the evolvability of different types of ribozymes, undergoing directed evolution.
我们以现有的鲁棒性和可演化性定义为基础并加以扩展,提出并使用了新的正式定义,并对具有基因型和相应表型的系统的鲁棒性和可演化性进行了匹配度量。我们解释并展示了这些测量方法如何比瓦格纳最初提出的常用/参考测量方法更通用,更能代表它们所代表的概念。此外,我们还受 NK 系统的启发,提出了一种多功能数字建模方法(BNK)。不过,与 NK 系统不同的是,BNK 除了适合度之外,还包含基因型和表型。我们开发了一种进化算法,并将其应用于 BNK 模型系统,以找到不同类型的完美振荡器。然后,我们将得到的振荡系统映射到可能的基因电路实现中。在合成生物学的主题下,我们还研究了 DNA 合成中的噪声对基于 DNA 的生物传感器的预测功能(即鲁棒性)的影响,并对不同类型的核糖酶在定向进化过程中的可进化性进行了理论评估。