Baosheng Wu, Qingmiao Ren, Xiaoting Yan, Fei Zhao, Tao Qin, Peidong Xin, Xinxin Cui, Kun Wang, Rui Du, Knut H Røed, Steeve D Côté, Glenn Yannic, Zhipeng Li, Qiang Qiu
{"title":"Resequencing of reindeer genomes provides clues to their docile habits.","authors":"Baosheng Wu, Qingmiao Ren, Xiaoting Yan, Fei Zhao, Tao Qin, Peidong Xin, Xinxin Cui, Kun Wang, Rui Du, Knut H Røed, Steeve D Côté, Glenn Yannic, Zhipeng Li, Qiang Qiu","doi":"10.1093/evlett/qrae006","DOIUrl":null,"url":null,"abstract":"<p><p>Reindeer have long been served as vital subsistence resources for inhabitants of Arctic and subarctic regions owing to their domestication. However, the evolutionary relationships and divergence times among different reindeer populations, genetic traits that distinguish domesticated reindeer, and factors that contribute to their relative docility compared with that of other Cervidae specie, remain unclear. In this study, we sequenced the genomes of 32 individuals from wild and domestic reindeer populations that inhabit Arctic and subarctic regions. We found that reindeer experienced 2 or more independent domestication events characterized by weak artificial selection pressure and limited significant differences in genomic parameters between wild and domestic populations. Alterations in conserved noncoding elements in the reindeer genomes, particularly those associated with nervous system development, may have contributed to their domestication by rendering the nervous system less responsive. Together, our results suggest that inherent species-specific traits, rather than intense artificial selection, may have played a significant role in the relatively docile behavior of reindeer and offer valuable insights into the domestication process of these animals.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"8 4","pages":"494-504"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291945/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrae006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reindeer have long been served as vital subsistence resources for inhabitants of Arctic and subarctic regions owing to their domestication. However, the evolutionary relationships and divergence times among different reindeer populations, genetic traits that distinguish domesticated reindeer, and factors that contribute to their relative docility compared with that of other Cervidae specie, remain unclear. In this study, we sequenced the genomes of 32 individuals from wild and domestic reindeer populations that inhabit Arctic and subarctic regions. We found that reindeer experienced 2 or more independent domestication events characterized by weak artificial selection pressure and limited significant differences in genomic parameters between wild and domestic populations. Alterations in conserved noncoding elements in the reindeer genomes, particularly those associated with nervous system development, may have contributed to their domestication by rendering the nervous system less responsive. Together, our results suggest that inherent species-specific traits, rather than intense artificial selection, may have played a significant role in the relatively docile behavior of reindeer and offer valuable insights into the domestication process of these animals.
期刊介绍:
Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology.
Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.