Microstructured Porous Capacitive Bio-pressure Sensor Using Droplet-based Microfluidics.

IF 1.3 Q4 ENGINEERING, BIOMEDICAL
Journal of Medical Signals & Sensors Pub Date : 2024-07-02 eCollection Date: 2024-01-01 DOI:10.4103/jmss.jmss_24_23
Mohammadmahdi Eskandarisani, Mahdi Aliverdinia, Vahid Mollania Malakshah, Shaghayegh Mirhosseini, Mahdi Moghimi Zand
{"title":"Microstructured Porous Capacitive Bio-pressure Sensor Using Droplet-based Microfluidics.","authors":"Mohammadmahdi Eskandarisani, Mahdi Aliverdinia, Vahid Mollania Malakshah, Shaghayegh Mirhosseini, Mahdi Moghimi Zand","doi":"10.4103/jmss.jmss_24_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Devices that mimic the functions of human skin are known as \"electronic skin,\" and they must have characteristics like high sensitivity, a wide dynamic range, high spatial homogeneity, cheap cost, wide area easy processing, and the ability to distinguish between diverse external inputs.</p><p><strong>Methods: </strong>This study introduces a novel approach, termed microfluidic droplet-based emulsion self-assembly (DMESA), for fabricating 3D microstructured elastomer layers using polydimethylsiloxane (PDMS). The method aims to produce accurate capacitive pressure sensors suitable for electronic skin (e-skin) applications. The DMESA method facilitates the creation of uniform-sized spherical micropores dispersed across a significant area without requiring a template, ensuring excellent spatial homogeneity.</p><p><strong>Results: </strong>Micropore size adjustment, ranging from 100 to 600 μm, allows for customization of pressure sensor sensitivity. The active layer of the capacitive pressure sensor is formed by the three-dimensional elastomer itself. Experimental results demonstrate the outstanding performance of the DMESA approach. It offers simplicity in processing, the ability to adjust performance parameters, excellent spatial homogeneity, and the capability to differentiate varied inputs. Capacitive pressure sensors fabricated using this method exhibit high sensitivity and dynamic amplitude, making them promising candidates for various e-skin applications.</p><p><strong>Conclusion: </strong>The DMESA method presents a highly promising solution for fabricating 3D microstructured elastomer layers for capacitive pressure sensors in e-skin technology. Its simplicity, performance adjustability, spatial homogeneity, and sensitivity to different inputs make it suitable for a wide range of electronic skin applications.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"14 ","pages":"14"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_24_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Devices that mimic the functions of human skin are known as "electronic skin," and they must have characteristics like high sensitivity, a wide dynamic range, high spatial homogeneity, cheap cost, wide area easy processing, and the ability to distinguish between diverse external inputs.

Methods: This study introduces a novel approach, termed microfluidic droplet-based emulsion self-assembly (DMESA), for fabricating 3D microstructured elastomer layers using polydimethylsiloxane (PDMS). The method aims to produce accurate capacitive pressure sensors suitable for electronic skin (e-skin) applications. The DMESA method facilitates the creation of uniform-sized spherical micropores dispersed across a significant area without requiring a template, ensuring excellent spatial homogeneity.

Results: Micropore size adjustment, ranging from 100 to 600 μm, allows for customization of pressure sensor sensitivity. The active layer of the capacitive pressure sensor is formed by the three-dimensional elastomer itself. Experimental results demonstrate the outstanding performance of the DMESA approach. It offers simplicity in processing, the ability to adjust performance parameters, excellent spatial homogeneity, and the capability to differentiate varied inputs. Capacitive pressure sensors fabricated using this method exhibit high sensitivity and dynamic amplitude, making them promising candidates for various e-skin applications.

Conclusion: The DMESA method presents a highly promising solution for fabricating 3D microstructured elastomer layers for capacitive pressure sensors in e-skin technology. Its simplicity, performance adjustability, spatial homogeneity, and sensitivity to different inputs make it suitable for a wide range of electronic skin applications.

基于液滴的微流体技术的微结构多孔电容式生物压力传感器
背景:模仿人体皮肤功能的设备被称为 "电子皮肤",它们必须具有高灵敏度、宽动态范围、高空间均匀性、低成本、大面积易处理以及能够区分各种外部输入等特性:本研究介绍了一种新方法,即基于微流体液滴的乳液自组装(DMESA),用于使用聚二甲基硅氧烷(PDMS)制造三维微结构弹性体层。该方法旨在生产适用于电子皮肤(e-skin)应用的精确电容式压力传感器。DMESA 方法无需模板即可在相当大的面积上形成大小均匀的球形微孔,确保了出色的空间均匀性:微孔尺寸可调范围为 100 至 600 μm,从而实现了压力传感器灵敏度的定制化。电容式压力传感器的活性层由三维弹性体本身形成。实验结果证明了 DMESA 方法的卓越性能。它处理简单,能够调整性能参数,具有出色的空间均匀性,并能区分不同的输入。使用这种方法制造的电容式压力传感器具有高灵敏度和动态振幅,因此很有希望用于各种电子皮肤应用:DMESA 方法为电子皮肤技术中电容式压力传感器的三维微结构弹性体层制造提供了一种极具前景的解决方案。其简便性、性能可调节性、空间均匀性和对不同输入的灵敏度使其适用于广泛的电子皮肤应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信