Bayan Taha Majid, Suha Ali Hussein, Shwan Kamal Rachid
{"title":"Unraveling the molecular regulation of biofilm underlying effect of chronic disease medications.","authors":"Bayan Taha Majid, Suha Ali Hussein, Shwan Kamal Rachid","doi":"10.14715/cmb/2024.70.7.3","DOIUrl":null,"url":null,"abstract":"<p><p>A biofilm is a complex microbial structure that promotes the progression of persistent infections, particularly in nosocomial settings via indwelling medical devices. Conventional antibiotics are often ineffective treatments for biofilms; hence, it is crucial to investigate or design non-antibiotic antibiofilm compounds that can successfully reduce and eradicate biofilm-related infections. This study was an attempt to repurpose chronic disease medications of the antihypertensive and antilipidemic drug classes, including candesartan cilexetil (CC) and ursodeoxycholic acid (UDCA), respectively, to be used as antibiofilm agents against the two infectious pathogens Staphylococcus aureus and Enterococcus faecalis. Crystal violet (CV) staining assay was used to evaluate the antibiofilm activity of the drugs. Real-time polymerase chain reaction (RT-PCR) was performed to determine the transcription levels of the biofilm-related genes (icaA and icaR in S. aureus and fsrC and gelE in E. faecalis) following treatment with different concentrations of CC and UDCA. we found that a concentration of greater than 1.5 µg/ml of CC significantly (p < 0.005) inhibited the biofilm formation of both bacterial isolates, and a concentration of greater than 50 µg/ml of UDCA significantly (p < 0.005) inhibited the biofilm formation of both bacterial isolates. Interestingly, the mRNA expression levels of biofilm-related genes were decreased in the two bacterial isolates at concentrations that were lower than the human pharmaceutical daily doses.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14715/cmb/2024.70.7.3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A biofilm is a complex microbial structure that promotes the progression of persistent infections, particularly in nosocomial settings via indwelling medical devices. Conventional antibiotics are often ineffective treatments for biofilms; hence, it is crucial to investigate or design non-antibiotic antibiofilm compounds that can successfully reduce and eradicate biofilm-related infections. This study was an attempt to repurpose chronic disease medications of the antihypertensive and antilipidemic drug classes, including candesartan cilexetil (CC) and ursodeoxycholic acid (UDCA), respectively, to be used as antibiofilm agents against the two infectious pathogens Staphylococcus aureus and Enterococcus faecalis. Crystal violet (CV) staining assay was used to evaluate the antibiofilm activity of the drugs. Real-time polymerase chain reaction (RT-PCR) was performed to determine the transcription levels of the biofilm-related genes (icaA and icaR in S. aureus and fsrC and gelE in E. faecalis) following treatment with different concentrations of CC and UDCA. we found that a concentration of greater than 1.5 µg/ml of CC significantly (p < 0.005) inhibited the biofilm formation of both bacterial isolates, and a concentration of greater than 50 µg/ml of UDCA significantly (p < 0.005) inhibited the biofilm formation of both bacterial isolates. Interestingly, the mRNA expression levels of biofilm-related genes were decreased in the two bacterial isolates at concentrations that were lower than the human pharmaceutical daily doses.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.