Histopathologic Analysis of Human Kidney Spatial Transcriptomics Data: Toward Precision Pathology.

IF 4.7 2区 医学 Q1 PATHOLOGY
American Journal of Pathology Pub Date : 2025-01-01 Epub Date: 2024-08-02 DOI:10.1016/j.ajpath.2024.06.011
Pierre Isnard, Dian Li, Qiao Xuanyuan, Haojia Wu, Benjamin D Humphreys
{"title":"Histopathologic Analysis of Human Kidney Spatial Transcriptomics Data: Toward Precision Pathology.","authors":"Pierre Isnard, Dian Li, Qiao Xuanyuan, Haojia Wu, Benjamin D Humphreys","doi":"10.1016/j.ajpath.2024.06.011","DOIUrl":null,"url":null,"abstract":"<p><p>The application of spatial transcriptomics (ST) technologies is booming and has already yielded important insights across many different tissues and disease models. In nephrology, ST technologies have helped to decipher the cellular and molecular mechanisms in kidney diseases and have allowed the recent creation of spatially anchored human kidney atlases of healthy and diseased kidney tissues. During ST data analysis, the computationally annotated clusters are often superimposed on a histologic image without their initial identification being based on the morphologic and/or spatial analyses of the tissues and lesions. Herein, histopathologic ST data from a human kidney sample were modeled to correspond as closely as possible to the kidney biopsy sample in a health care or research context. This study shows the feasibility of a morphology-based approach to interpreting ST data, helping to improve our understanding of the lesion phenomena at work in chronic kidney disease at both the cellular and the molecular level. Finally, the newly identified pathology-based clusters could be accurately projected onto other slides from nephrectomy or needle biopsy samples. Thus, they serve as a reference for analyzing other kidney tissues, paving the way for the future of molecular microscopy and precision pathology.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":"69-88"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686452/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2024.06.011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The application of spatial transcriptomics (ST) technologies is booming and has already yielded important insights across many different tissues and disease models. In nephrology, ST technologies have helped to decipher the cellular and molecular mechanisms in kidney diseases and have allowed the recent creation of spatially anchored human kidney atlases of healthy and diseased kidney tissues. During ST data analysis, the computationally annotated clusters are often superimposed on a histologic image without their initial identification being based on the morphologic and/or spatial analyses of the tissues and lesions. Herein, histopathologic ST data from a human kidney sample were modeled to correspond as closely as possible to the kidney biopsy sample in a health care or research context. This study shows the feasibility of a morphology-based approach to interpreting ST data, helping to improve our understanding of the lesion phenomena at work in chronic kidney disease at both the cellular and the molecular level. Finally, the newly identified pathology-based clusters could be accurately projected onto other slides from nephrectomy or needle biopsy samples. Thus, they serve as a reference for analyzing other kidney tissues, paving the way for the future of molecular microscopy and precision pathology.

基于组织病理学的人类肾脏空间转录组学数据分析:迈向精准病理学。
空间转录组(ST)技术的应用正在蓬勃发展,已经在许多不同的组织和疾病模型中产生了重要的见解。在肾脏病学领域,空间转录组技术有助于破译肾脏疾病的细胞和分子机制,并在最近建立了健康和患病肾脏组织的空间锚定人类肾脏图谱。在 ST 数据分析过程中,计算标注的集群往往被叠加到组织学图像上,而没有根据组织和病变的形态和空间分析对其进行初步识别。在本研究中,我们对人类肾脏样本的空间转录组学数据进行了基于组织病理学的分析,尽可能贴近医疗保健或研究背景下肾脏活检的实际解读。我们的工作证明了用基于形态学的方法解读 ST 数据的可行性,有助于我们从细胞和分子两个层面加深对慢性肾脏病病变现象的理解。最后,我们的研究表明,我们新发现的基于病理学的集群可以准确地投射到来自肾切除术或针刺活检样本的其他切片上,从而作为分析其他肾组织的参考,为未来的分子显微镜和精确病理学铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.40
自引率
0.00%
发文量
178
审稿时长
30 days
期刊介绍: The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信